cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038765 Next-to-last diagonal of A024462.

Original entry on oeis.org

1, 2, 7, 24, 81, 270, 891, 2916, 9477, 30618, 98415, 314928, 1003833, 3188646, 10097379, 31886460, 100442349, 315675954, 990074583, 3099363912, 9685512225, 30218798142, 94143178827, 292889889684, 910050728661, 2824295364810
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

If w is a binary string of length 2n-1 and v(w) is a vector of the Hamming weights of each substring of length n, then a(n) is the number of distinct v(w) for all possible w. - Orson R. L. Peters, Jun 01 2017

References

  • S. J. Cyvin et al., Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.

Crossrefs

Cf. A024462.

Programs

  • Magma
    [1] cat [3^(n-2)*(n+5): n in [1..30]]; // Vincenzo Librandi, Oct 22 2013
  • Maple
    seq(ceil(1/9*3^n*(5+n)),n=0..50);
  • Mathematica
    CoefficientList[Series[(1 - 2 x)^2/(1 - 3 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 22 2013 *)
    LinearRecurrence[{6,-9},{1,2,7},30] (* Harvey P. Dale, Jul 04 2018 *)

Formula

G.f.: (1-2*x)^2/(1-3*x)^2. [Detlef Pauly (dettodet(AT)yahoo.de), Mar 03 2003]
a(n) = 6*a(n-1)-9*a(n-2) for n>2. a(n) = 3^(n-2)*(n+5) for n>0. [Colin Barker, Jun 25 2012]

Extensions

More terms from James Sellers, May 03 2000