cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A038791 An intermediate sequence for nonisomorphic circulant p^2-tournaments, indexed by odd primes p.

Original entry on oeis.org

2, 4, 12, 104, 344, 4096, 14572, 190652, 9586984, 35791472, 1908874584, 27487790720, 104715393912, 1529755308212, 86607685141744, 4969489243995032, 19215358410149344, 1117984489315857512, 16865594581677305360, 65588423373189982912
Offset: 2

Views

Author

N. J. A. Sloane, May 04 2000

Keywords

Comments

Number of subsets of {1, ..., p} with product = 1 mod p, where p is the n-th prime. - Charles R Greathouse IV, Jun 06 2013
Also : Number of subsets of {1, ..., p} with product = -1 mod p, where p is the n-th prime. - Ridouane Oudra, Jul 08 2025

Crossrefs

Programs

  • Mathematica
    has[p_] := Module[{v, u}, v = Table[0, {p-1}]; v[[1]] = 1; For[n = 2, n <= p-1, n++, u = Table[0, {p-1}]; For[j = 1, j <= p-1, j++, u[[Mod[j*n, p]]] += v[[j]]]; v += u]; 2*v[[1]]];
    a[n_] := has[Prime[n]];
    Table[a[n], {n, 2, 21}] (* Jean-François Alcover, Aug 30 2019, after Charles R Greathouse IV *)
  • PARI
    has(p)=my(v=vector(p-1),u); v[1]=1; for(n=2,p-1,u=vector(p-1); for(j=1,p-1, u[j*n%p]+=v[j]);v+=u); 2*v[1]
    a(n)=has(prime(n)) \\ Charles R Greathouse IV, Jun 06 2013

Formula

a(p^2) = A038790(p^2) - A038789(p^2) + A038792(p^2).
a(n) = A238446(n) + 1. - Ridouane Oudra, Jul 08 2025

Extensions

More terms from Valery A. Liskovets, May 09 2001
a(12)-a(20) from Charles R Greathouse IV, Jun 06 2013

A038788 Non-Cayley-isomorphic circulant self-complementary directed p^2-graphs, indexed by odd primes p.

Original entry on oeis.org

1, 4, 4, 16, 64, 400, 900, 8836, 355216, 1201216, 53523856, 690217984, 2494003600, 33255899044, 1666350520384, 85680866908816, 320296595636224, 16939175556745744, 240937075998869056, 910964509740273664, 49676441991516395584, 719170624451273114176
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2000

Keywords

References

  • V. A. Liskovets and R. Poeschel, Non-Cayley-isomorphic self-complementary circulant graphs, J. Graph Th., 34, 2000, 128-141.

Crossrefs

Formula

a(p^2) = A049309(p)^2.
a(p^2) = A054246(p^2) for p=4k-1.
a(p^2) = ( (1/(p-1)) * Sum_{r|p-1 and r even} phi(r) * 2^((p-1)/r) )^2. - Sean A. Irvine, Feb 14 2021

Extensions

More terms from Valery A. Liskovets, May 09 2001
More terms and offset corrected by Sean A. Irvine, Feb 14 2021

A061848 An intermediate sequence for nonisomorphic circulant self-complementary undirected p^2-graphs, indexed by odd primes p.

Original entry on oeis.org

0, 2, 0, 0, 12, 38, 0, 0, 1172, 0, 14572, 52536, 0, 0, 2581112, 0, 35791472, 0, 0, 1908889156, 0, 0, 399822600756, 5864062716964, 22517998136936, 0, 0, 333599972407532, 1286742760265468, 0, 0, 4340410370789890656, 0, 255263053128088930472, 0
Offset: 3

Views

Author

Valery A. Liskovets, May 09 2001

Keywords

Comments

a(p^2)=0 for p=4k-1

Crossrefs

Cf. A038787.

Formula

a(p^2)= A061847(p^2) - A061846(p^2) + A061849(p^2)

Extensions

More terms from Sean A. Irvine, Mar 09 2023
Showing 1-3 of 3 results.