cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A064012 usigma(usigma(n))=3*n where usigma(n) is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

10, 30, 288, 660, 720, 2146560
Offset: 1

Views

Author

Felice Russo, Sep 07 2001

Keywords

Comments

Is this sequence finite?
18 is the only known integer usigma(usigma(n)) = kn for some integer k >= 4 (no other one <= 2^30). - Tomohiro Yamada, Apr 22 2017
a(7) > 2.85*10^11, if it exists. The same bound holds also for any n > 18 such usigma(usigma(n)) = k*n for some integer k >= 4. - Giovanni Resta, Apr 10 2019

Examples

			10 belongs to the sequence because usigma(usigma(10)) = 30 = 3*10.
		

Crossrefs

Extensions

One more term from Naohiro Nomoto, Oct 21 2001
No other terms < 1070000000, Jud McCranie, Oct 28 2001

A328120 Exponential superperfect numbers (or e-superperfect numbers): numbers m such that esigma(esigma(m)) = 2m, where esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

9, 12, 45, 60, 63, 84, 99, 117, 132, 153, 156, 171, 204, 207, 228, 261, 270, 276, 279, 315, 333, 348, 369, 372, 387, 420, 423, 444, 477, 492, 495, 516, 531, 549, 564, 585, 603, 636, 639, 657, 660, 693, 708, 711, 732, 747, 765, 780, 801, 804, 819, 852, 855, 873
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

Comments

Hanumanthachari et al. proved that:
1) The only e-superperfect number of the form p^q with p and q primes is 9 = 3^2.
2) If p prime, m squarefree coprime to m with gcd(p+1, m) > 1 then p^2 * m is e-superperfect only if p = 2.
3) If k is squarefree coprime to esigma(m) then m*k is e-superperfect if and only if m is e-superperfect.

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 53.

Crossrefs

The exponential version of A019279.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; espQ[n_] := esigma[esigma[n]] == 2n; Select[Range[1000], espQ]
  • PARI
    esigma(n) = {my(f = factor(n)); prod(k = 1, #f~, sumdiv(f[k, 2], d, f[k, 1]^d));}
    isok(k) = esigma(esigma(k)) == 2*k; \\ Amiram Eldar, Jan 09 2025

Formula

9 is in the sequence since esigma(9) = 12 and esigma(12) = 18 = 2*9.

A329884 Nonunitary superperfect numbers: numbers k such that nusigma(nusigma(k)) = k, where nusigma(k) = sigma(k) - usigma(k) is the sum of nonunitary divisors of k (A048146).

Original entry on oeis.org

24, 48, 56, 112, 192, 248, 252, 328, 448, 496, 768, 1016, 1792, 1984, 2032, 3240, 6462, 7936, 8128, 11616, 11808, 17412, 20538, 32512, 49152, 65528, 114688, 131056, 507904, 524224, 786432, 1048568, 1835008, 2080768, 2096896, 2097136, 3145728, 4194296, 7340032
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Comments

Analogous to superperfect numbers (A019279) as nonunitary perfect numbers (A064591) is analogous to perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; Select[Range[10^6], nusigma[nusigma[#]] == # &]

A369204 Numbers m such that A034448(A188999(m)) = k*m for some k, where A034448 and A188999 are respectively the unitary and the bi-unitary sigma function.

Original entry on oeis.org

1, 2, 8, 9, 10, 18, 24, 27, 30, 54, 165, 238, 288, 512, 656, 660, 864, 952, 1536, 1968, 2464, 2880, 4608, 4680, 13824, 14448, 14976, 16728, 19008, 19992, 23040, 29376, 60928, 152064, 155520, 172368, 279552, 474936, 746928, 1070592, 1114560, 1524096, 1703520
Offset: 1

Views

Author

Tomohiro Yamada, Jan 16 2024

Keywords

Examples

			A188999(18) = 4 * 10 = 40 and A034448(40) = 9 * 6 = 54 = 3 * 18, so 18 is a term with k = 3.
		

Crossrefs

Cf. A038843 (analog for A034448(A034448(m))), A318175 (analog for A188999(A188999(m))).
Cf. A369205 (analog for A188999(A034448(m))).

Programs

  • PARI
    a034448(n) = {my(f,i,p,e);f=factor(n);for(i=1,#f~,p=f[i,1];e=f[i,2];f[i,1]=p^e+1;f[i,2]=1);factorback(f)};
    a188999(n) = {my(f,i,p,e);f=factor(n);for(i=1,#f~,p=f[i,1];e=f[i,2];f[i,1]=if(e%2,(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2));f[i,2]=1);factorback(f)};
    isok(n) = (a034448(a188999(n))%n) == 0;

A369205 Numbers m such that A188999(A034448(m)) = k*m for some k, where A034448 and A188999 are respectively the unitary and the bi-unitary sigma function.

Original entry on oeis.org

1, 2, 9, 10, 15, 18, 21, 30, 40, 42, 60, 120, 288, 567, 630, 720, 756, 1023, 1134, 1428, 2046, 2160, 2268, 2520, 3024, 3276, 3570, 4092, 6048, 8184, 8925, 9240, 11424, 11550, 15345, 17850, 18144, 30690, 35700, 46200, 57120, 85680, 147312, 285600, 491040, 556920
Offset: 1

Views

Author

Tomohiro Yamada, Jan 16 2024

Keywords

Examples

			A034448(18) = 4 * 10 = 40 and A188999(40) = 15 * 6 = 90 = 5 * 18, so 18 is a term with k = 5.
		

Crossrefs

Cf. A038843 (analog for A034448(A034448(m))), A318175 (analog for A188999(A188999(m))).
Cf. A369204 (analog for A034448(A188999(m))).

Programs

  • PARI
    a034448(n) = {my(f,i,p,e);f=factor(n);for(i=1,#f~,p=f[i,1];e=f[i,2];f[i,1]=p^e+1;f[i,2]=1);factorback(f)};
    a188999(n) = {my(f,i,p,e);f=factor(n);for(i=1,#f~,p=f[i,1];e=f[i,2];f[i,1]=if(e%2,(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2));f[i,2]=1);factorback(f)};
    isok(n) = (a188999(a034448(n))%n) == 0;

A329881 Nonunitary doubly superperfect numbers: numbers k such that nusigma(nusigma(k)) = 2*k, where nusigma(k) = sigma(k) - usigma(k) is the sum of nonunitary divisors of k (A048146).

Original entry on oeis.org

4032, 13104, 58032, 69648, 237744, 278592, 365652, 1114368, 15333552, 71319552, 245364912, 981465264, 1141112832, 4564451328, 873139150710, 4020089387184
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Comments

Analogous to superperfect numbers (A019279) as nonunitary doubly perfect numbers (A064592) is analogous to perfect numbers (A000396).
If n = 2^k*3*1451 and nusigma(n) = 2^5*3*11^2*p, with p > 11 prime, then n is a term. This happens for k = 4, 6, 8, 14, 18, 20, 32, 62, 90, 108, 128, 522, 608, ... . Similarly, if p=2^k-1 is prime (A000043), then 2^4*3^2*13*p is a term for k > 2. - Giovanni Resta, Nov 23 2019
a(17) > 6*10^12. - Giovanni Resta, Nov 24 2019

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; Select[Range[3*10^5], nusigma[nusigma[#]] == 2*# &]

Extensions

a(15)-a(16) from Giovanni Resta, Nov 24 2019
Showing 1-6 of 6 results.