cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038845 3-fold convolution of A000302 (powers of 4).

Original entry on oeis.org

1, 12, 96, 640, 3840, 21504, 114688, 589824, 2949120, 14417920, 69206016, 327155712, 1526726656, 7046430720, 32212254720, 146028888064, 657129996288, 2937757630464, 13056700579840, 57724360458240, 253987186016256, 1112705767309312, 4855443348258816
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A002802 with A000984 (central binomial coefficients).
With a different offset, number of n-permutations of 5 objects u, v, w, z, x with repetition allowed, containing exactly two u's. - Zerinvary Lajos, Dec 29 2007
Also convolution of A000302 with A002697, also convolution of A002457 with itself. - Rui Duarte, Oct 08 2011

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), this sequence (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

Formula

a(n) = (n+2)*(n+1)*2^(2*n-1).
G.f.: 1/(1-4*x)^3.
a(n) = Sum_{u+v+w+x+y+z=n} f(u)*f(v)*f(w)*f(x)*f(y)*f(z) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
a(n) = binomial(n+2,n) * 4^n. - Rui Duarte, Oct 08 2011
E.g.f.: (1 + 8*x + 8*x^2)*exp(4*x). - G. C. Greubel, Jul 20 2019
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 8 - 24*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 40*log(5/4) - 8. (End)