A038845 3-fold convolution of A000302 (powers of 4).
1, 12, 96, 640, 3840, 21504, 114688, 589824, 2949120, 14417920, 69206016, 327155712, 1526726656, 7046430720, 32212254720, 146028888064, 657129996288, 2937757630464, 13056700579840, 57724360458240, 253987186016256, 1112705767309312, 4855443348258816
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Adam Ehrenberg, Joseph T. Iosue, Abhinav Deshpande, Dominik Hangleiter, and Alexey V. Gorshkov, The Second Moment of Hafnians in Gaussian Boson Sampling, arXiv:2403.13878 [quant-ph], 2024. See p. 30.
- Index entries for linear recurrences with constant coefficients, signature (12,-48,64).
Crossrefs
Programs
-
GAP
List([0..30], n-> 4^n*Binomial(n+2,n) ); # G. C. Greubel, Jul 20 2019
-
Magma
[4^n*Binomial(n+2, 2): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
Maple
seq((n+2)*(n+1)*4^n/2, n=0..30); # Zerinvary Lajos, Apr 25 2007
-
Mathematica
Table[4^n*Binomial[n+2,n], {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
-
PARI
a(n)=(n+2)*(n+1)<<(2*n-1) \\ Charles R Greathouse IV, Aug 21 2015
-
Sage
[4^(n-2)*binomial(n,2) for n in range(2, 30)] # Zerinvary Lajos, Mar 11 2009
Formula
a(n) = (n+2)*(n+1)*2^(2*n-1).
G.f.: 1/(1-4*x)^3.
a(n) = Sum_{u+v+w+x+y+z=n} f(u)*f(v)*f(w)*f(x)*f(y)*f(z) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
a(n) = binomial(n+2,n) * 4^n. - Rui Duarte, Oct 08 2011
E.g.f.: (1 + 8*x + 8*x^2)*exp(4*x). - G. C. Greubel, Jul 20 2019
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 8 - 24*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 40*log(5/4) - 8. (End)
Comments