A038874 Primes p such that 3 is a square mod p.
2, 3, 11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, 179, 181, 191, 193, 227, 229, 239, 241, 251, 263, 277, 311, 313, 337, 347, 349, 359, 373, 383, 397, 409, 419, 421, 431, 433, 443, 457, 467, 479, 491, 503, 541, 563, 577, 587, 599, 601
Offset: 1
Examples
11 is in the sequence since the equation x^2 - 11y = 3 has solutions, such as x = 5, y = 2. 13 is in the sequence since the equation x^2 - 13y = 3 has solutions, such as x = 4, y = 1. 17 is not in the sequence because x^2 - 17y = 3 has no solutions in integers; Legendre(3, 17) = -1.
References
- Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 74, Theorem 25.3.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Tamara M. Lavshuk, Regular polygons and polyhedra over finite field, Mathematical Notes of NEFU, Vol 22 No 4 (2015). Mentions this sequence.
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(1200) | p mod 12 in [1, 2, 3, 11]]; // Vincenzo Librandi, Aug 08 2012
-
Maple
select(isprime, [2,3, seq(seq(6+s+12*i, s=[-5,5]),i=0..1000)]); # Robert Israel, Dec 23 2015
-
Mathematica
Select[Prime[Range[250]], MemberQ[{1, 2, 3, 11}, Mod[#, 12]] &] (* Vincenzo Librandi, Aug 08 2012 *) Select[Flatten[Join[{2, 3}, Table[{12n - 1, 12n + 1}, {n, 50}]]], PrimeQ] (* Alonso del Arte, Nov 25 2015 *)
-
PARI
forprime(p=2, 1e3, if(issquare(Mod(3, p)), print1(p , ", "))) \\ Altug Alkan, Dec 04 2015
Formula
a(n) ~ 2n log n. - Charles R Greathouse IV, Nov 29 2016
Extensions
More terms from Henry Bottomley, Aug 10 2000
Comments