A097956
Primes p such that p divides 5^(p-1)/2 - 3^(p-1)/2.
Original entry on oeis.org
7, 11, 17, 43, 53, 59, 61, 67, 71, 103, 109, 113, 127, 131, 137, 163, 173, 179, 181, 191, 197, 223, 229, 233, 239, 241, 251, 257, 283, 293, 307, 311, 317, 349, 353, 359, 367, 409, 419, 421, 431, 463, 479, 487, 491, 523, 541, 547, 557, 593, 599, 601, 607, 617
Offset: 1
7 is a term since 5^3 - 3^3 = 7*14.
A038887, the sequence of primes that do not remain inert in the field Q(sqrt(15)), is essentially the same.
Cf.
A038888 (rational primes that remain inert in the field Q(sqrt(15))).
-
Select[Prime[Range[150]],Divisible[5^((#-1)/2)-3^((#-1)/2),#]&] (* Harvey P. Dale, Apr 11 2018 *)
-
\\ s = +-1, d=diff
ptopm1d2(n,x,d,s) = { forprime(p=3,n,p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0, print1(p, ", "))) }
ptopm1d2(1000, 5, 2, -1)
-
isA097956(p) == isprime(p) && kronecker(60, p) == 1 \\ Jianing Song, Oct 13 2022
A378711
Irregular triangle read by rows: row n gives the proper positive integer fundamental solutions (x, y) of x^2 - 15*y^2 = - A378710(n), for n >= 1.
Original entry on oeis.org
3, 1, 2, 1, 7, 2, 1, 1, 11, 3, 15, 4, 5, 2, 10, 3, 3, 2, 18, 5, 1, 2, 26, 7, 8, 3, 13, 4, 7, 3, 17, 5, 5, 3, 25, 7, 4, 3, 11, 4, 16, 5, 29, 8, 2, 3, 37, 10, 1, 3, 41, 11, 9, 4, 24, 7, 14, 5, 19, 6, 7, 4, 32, 9, 13, 5, 23, 7, 5, 4, 40, 11, 3, 4, 12, 5, 27, 8, 48, 13, 1, 4, 56, 15
Offset: 1
n, A378710(n) \ k 1 2 3 4 5 6 7 8 pairs = 2^P
----------------------------------------------------------------------
1, 6 = 2*3 | 3 1 1
2, 11 | 2 1, 7 2 2
3, 14 = 2*7 | 1 1, 11 3 2
4, 15 = 3*5 | 15 4 1
5, 35 = 5*7 | 5 2, 10 3 2
6, 51 = 3*17 | 3 2, 18 5 2
7, 59 | 1 2, 26 7 2
8, 71 | 8 3, 13 4 2
9, 86 = 2*43 | 7 3, 17 5 2
10, 110 = 2*5*11 | 5 3, 25 7 2
11 119 = 7*17 | 4 3, 11 4, 16 5, 29 8 4
12, 131 | 2 3, 37 10 2
13, 134 = 2*67 | 1 3, 41 11 2
14, 159 = 3*53 | 9 4, 24 7 2
15, 179 | 14 5, 19 6 2
16, 191 | 7 4, 32 9 2
17, 206 = 2*103 | 13 5, 23 7 2
18, 215 = 5*43 | 5 4, 40 11 2
19, 231 = 3*7*11 | 3 4, 12 5, 27 8, 48 13 4
20, 239 | 1 4, 56 15 2
...
For the representation of -A378710(19) = -231 = -3*7*11 see the linked Figure of the directed and weighted Pell cycle graph with the two pairs of conjugate rpapfs (corresponding to solution of the congruence j^2 - 15 = = 0 (mod 231) with j and 231 - j, for j = 57 and j = 90. There the t-values are given as weights. E.g., the rpapf Fpa4 = [-231. 282, -86] has t-values (1-, 2, 2, 6). The pairs of row n = 19 belong to FPa1, FPa3, Fpa4 and FPa2, with the i exponents in the formula above 0, 0, 1, 1, respectively, and the sign of B15 is - in all four cases.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986.
A035197
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 15.
Original entry on oeis.org
1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 2, 3, 0, 4, 1, 5, 2, 2, 0, 3, 2, 4, 0, 4, 1, 0, 1, 6, 0, 2, 0, 6, 2, 4, 2, 3, 0, 0, 0, 4, 0, 4, 2, 6, 1, 0, 0, 5, 3, 2, 2, 0, 2, 2, 2, 8, 0, 0, 2, 3, 2, 0, 2, 7, 0, 4, 2, 6, 0, 4, 2, 4, 0, 0, 1, 0, 4, 0, 0, 5, 1
Offset: 1
-
a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[15, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
-
my(m=15); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
-
a(n) = sumdiv(n, d, kronecker(15, d)); \\ Amiram Eldar, Nov 18 2023
A378710
Positive numbers k such that -k is properly represented by the Pell Form x^2 - 15*y^2.
Original entry on oeis.org
6, 11, 14, 15, 35, 51, 59, 71, 86, 110, 119, 131, 134, 159, 179, 191, 206, 215, 231, 239, 251, 254, 294, 311, 326, 335, 339, 359, 366, 371, 374, 411, 419, 431, 446, 479, 491, 519, 515, 519, 539, 566, 590, 591, 599, 614, 635, 654, 659, 671, 686
Offset: 1
-2, -3, and -5 are not in the sequence because the rpapfs are [-2, 2, 7] reaching after two R(t)-steps with t values -0 and -1 the cycle member Cyhat(1), [-3, 0, 5] reaching with t values 0 and 1 Cy(1), and [-5, 0, 3] reaches with t = 0 Cyhat(2), respectively.
-a(1) = -6 = -2*3 is represented because [-6, 6, 1] = CR(2) (already a reduced form). There is only one infinite family of proper solutions with y > 0 (an ambiguous case) with fundamental solution (x, y) = (3, 1).
There is no solution representing -10 = -2*5, because [-10, 10, -1] leads with t = -8 to CRhat(1).
-a(11) = - 119 has the four rpapfs [-119, 54, -6], [-119, 82, -14], [-119, 156, -51], and [-119, 184, -71]. They lead with t = -5, t = -3, 4, t = -1, 2, 2, and t = -1, 3 to members CR(2), CR(1), CR(1), and CR(2), respectively.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986. Theorem 5.10, pp, 121-122.
- A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 21 - 34.
- Trygve Nagell, Introduction to Number Theory, 2nd edition, Chelsea Publishing Company, 1964, pp. 195 - 212.
- A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, chapter IV, pp. 97 - 126.
Showing 1-4 of 4 results.
Comments