cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A248910 Numbers with no zeros in base-6 representation.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2015

Keywords

Comments

Different from A039215, A047253, A184522, A187390, A194386.

Crossrefs

Cf. A007092, A100969 (subsequence).
Zeroless numbers in some other bases <= 10: A000042 (base 2), A032924 (base 3), A023705 (base 4), A255805 (base 8), A255808 (base 9), A052382 (base 10).

Programs

  • Haskell
    a248910 n = a248910_list !! (n-1)
    a248910_list = iterate f 1 where
       f x = 1 + if r < 5 then x else 6 * f x'  where (x', r) = divMod x 6
    
  • Mathematica
    Select[Range[100], DigitCount[#,6, 0] == 0 &] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    isok(m) = vecmin(digits(m, 6)) > 0; \\ Michel Marcus, Jan 23 2022
    
  • Python
    from sympy import integer_log
    def A248910(n):
        m = integer_log(k:=(n<<2)+1,5)[0]
        return sum((1+(k-5**m)//(5**j<<2)%5)*6**j for j in range(m)) # Chai Wah Wu, Jun 28 2025

A108120 Floor[n*1/Sin[1]], or Beatty sequence for 1/sin(1).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 83, 84, 85
Offset: 1

Views

Author

Zak Seidov, Jun 04 2005

Keywords

Comments

Complement of A108587; not the same as A108586: a(37)=43 <> A108586(37)=44. - Reinhard Zumkeller, Jun 11 2005

Crossrefs

Programs

  • Mathematica
    a[n_]:=Floor[n*1/Sin[1]];Table[a[n], {n, 90}]

Formula

a(n) = floor(n*1/sin(1))

A108611 Excess of Beatty-function of 1/sin(1) over n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16
Offset: 0

Views

Author

Zak Seidov, Jun 13 2005

Keywords

Crossrefs

Formula

a(n) = A108120[n] - n.

A108612 Beatty-2 (or nested Beatty) sequence for 1/sin(1).

Original entry on oeis.org

1, 4, 9, 16, 25, 42, 56, 72, 90, 110, 143, 168, 195, 224, 255, 304, 340, 378, 418, 460, 504, 572, 621, 672, 725, 780, 864, 924, 986, 1050, 1116, 1216, 1287, 1360, 1435, 1512, 1591, 1710, 1794, 1880, 1968, 2058, 2193, 2288, 2385, 2484, 2585, 2736, 2842, 2950
Offset: 1

Views

Author

Zak Seidov, Jun 13 2005

Keywords

Crossrefs

Formula

a(n) = floor(n*floor(n/sin(1))).

A108613 Excess of Beatty-2 function of 1/sin(1) over n^2.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 22, 24, 26, 28, 30, 48, 51, 54, 57, 60, 63, 88, 92, 96, 100, 104, 135, 140, 145, 150, 155, 192, 198, 204, 210, 216, 222, 266, 273, 280, 287, 294, 344, 352, 360, 368, 376, 432, 441, 450, 459, 468, 477, 540, 550, 560, 570, 580, 649, 660
Offset: 0

Views

Author

Zak Seidov, Jun 13 2005

Keywords

Comments

Cf. A108612 Beatty-2 (or nested Beatty) function of 1/sin(1).

Crossrefs

Formula

a(n) = A108612[n] - n^2 = floor(n*floor(n/sin(1))) - n^2.
Showing 1-5 of 5 results.