A039683 Signed double Pochhammer triangle: expansion of x(x-2)(x-4)..(x-2n+2).
1, -2, 1, 8, -6, 1, -48, 44, -12, 1, 384, -400, 140, -20, 1, -3840, 4384, -1800, 340, -30, 1, 46080, -56448, 25984, -5880, 700, -42, 1, -645120, 836352, -420224, 108304, -15680, 1288, -56, 1, 10321920, -14026752, 7559936, -2153088, 359184, -36288, 2184, -72, 1
Offset: 1
Examples
Triangle starts: {1}, {2,1}, {8,6,1}, {48,44,12,1}, ... From _Paul Barry_, Apr 29 2009: (Start) The unsigned triangle [1/(1-2x),log(1/sqrt(1-2x))] has production matrix: 2, 1, 4, 4, 1, 8, 12, 6, 1, 16, 32, 24, 8, 1, 32, 80, 80, 40, 10, 1, 64, 192, 240, 160, 60, 12, 1 which is A007318^{2} beheaded. (End)
Links
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Tom Copeland, Addendum to Mathemagical Forests.
- P. Feijão, F. V. Martinez, and A. Thévenin, On the distribution of cycles and paths in multichromosomal breakpoint graphs and the expected value of rearrangement distance, BMC Bioinformatics 16:Suppl19 (2015), S1. doi:10.1186/1471-2105-16-S19-S1
- Lisa Glaser, Causal set actions in various dimensions, J. Phys.: Conf. Ser. 306 (2011), 012041.
- Wolfdieter Lang, First 9 rows and comment.
- Peter Luschny, The Bell transform
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres relies aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).
Crossrefs
Programs
-
Mathematica
Table[ Rest@ CoefficientList[ Product[ z-k, {k, 0, 2p-2, 2} ], z ], {p, 6} ]
-
Sage
# uses[bell_transform from A264428] # Unsigned values and an additional first column (1,0,0,...). def A039683_unsigned_row(n): a = sloane.A000165 dblfact = a.list(n) return bell_transform(n, dblfact) [A039683_unsigned_row(n) for n in (0..9)] # Peter Luschny, Dec 20 2015
Formula
T(n, m) = T(n-1, m-1) - 2*(n-1)*T(n-1, m), n >= m >= 1; T(n, m) := 0, n
E.g.f. for m-th column of signed triangle: (((log(1+2*x))/2)^m)/m!.
E.g.f.: (1+2*x)^(y/2). O.g.f. for n-th row of signed triangle: Sum_{m=0..n} Stirling1(n, m)*2^(n-m)*x^m. - Vladeta Jovovic, Feb 11 2003
T(n, m) = S1(n, m)*2^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle).
The production matrix below is A038207 with the first row removed. With the initial index n = 0, the associated differential raising operator is R = e^(2D)*x = (2+x)*e^(2D) with D = d/dx, i.e., R p_n(x) = p_(n+1)(x) where p_n(x) is the n-th unsigned row polynomial and p_0(x) = 1, so p_(n+1)(x) = (2+x) * p_n(2+x). - Tom Copeland, Oct 11 2016
Extensions
Additional comments from Wolfdieter Lang
Title revised by Tom Copeland, Dec 21 2013
Comments