cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039699 Number of 4-dimensional cubic lattice walks that start and end at the origin after 2n steps, free to pass through origin at intermediate stages.

Original entry on oeis.org

1, 8, 168, 5120, 190120, 7939008, 357713664, 16993726464, 839358285480, 42714450658880, 2225741588095168, 118227198981126144, 6380762273973278464, 349019710593278412800, 19310744204362333900800, 1079054103459778710405120, 60818479243449308702049960
Offset: 0

Views

Author

Alessandro Zinani (alzinani(AT)tin.it)

Keywords

Comments

Generating function G(x) is D-finite with a singular point at x = 1/64 (cf. Graph Link). After summing 300000 terms, G(1/64) = 1.239466... and 1 - 1/G(1/64) = 0.193201... Convergence to A086232 is very slow. - Bradley Klee, Aug 20 2018
a(n) is also the constant term in the expansion of (w + 1/w + x + 1/x + y + 1/y + z + 1/z)^(2n). This follows directly from the sequence name, each variable corresponding to a single step in one of the four axis directions. - Christopher J. Smyth, Sep 28 2018

Examples

			a(5)=7939008, i.e., there are 7939008 different walks that start and end at origin of a 4-dimensional integer lattice after 2*5=10 steps, free to pass through origin at intermediate steps.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 322-331.

Crossrefs

1-dimensional, 2-dimensional, 3-dimensional analogs are A000984, A002894, A002896. Pólya Constant: A086232.
Row k=4 of A287318.

Programs

  • Maple
    A039699 := n -> binomial(2*n,n)^2*hypergeom([1/2, -n, -n, -n],[1, 1, 1/2 - n], 1):
    seq(simplify(A039699(n)), n=0..14); # Peter Luschny, May 23 2017
  • Mathematica
    max = 30 (* must be even *); Partition[ CoefficientList[ Series[ BesselI[0, 2 x]^4, {x, 0, max}], x]*Range[0, max]!, 2][[All, 1]] (* Jean-François Alcover, Oct 05 2011 *)
    With[{nn=30},Take[CoefficientList[Series[BesselI[0,2x]^4,{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Aug 09 2013 *)
    RecurrenceTable[{256*(n-1)^2*(2*n-3)*(2*n-1)*a[n-2] - 4*(2*n-1)^2*(5*n^2-5*n+2)*a[n-1] + n^4*a[n]==0, a[0]==1, a[1]==8}, a, {n,0,100}] (* Bradley Klee, Aug 20 2018 *)
  • PARI
    C=binomial;
    A002895(n) = sum(k=0,n, C(n,k)^2 * C(2*n-2*k,n-k) * C(2*k,k) );
    a(n)= C(2*n,n) * A002895(n);
    /* Joerg Arndt, Apr 19 2013 */
    
  • Python
    from math import comb
    def A039699(n): return comb(n<<1,n)*((sum(comb(n,k)**2*comb(n-k<<1,n-k)*comb(m:=k<<1,k) for k in range(n+1>>1))<<1) + (0 if n&1 else comb(n,n>>1)**4)) # Chai Wah Wu, Jun 17 2025

Formula

E.g.f.: Sum_{n>=0} a(2*n) * x^(2*n)/(2*n)! = I_0(2*x)^4. (I = Modified Bessel function of the first kind).
a(n) = binomial(2*n,n)*A002895(n). - Mark van Hoeij, Apr 19 2013
a(n) = binomial(2*n,n)^2*hypergeom([1/2,-n,-n,-n],[1,1,1/2-n],1). - Peter Luschny, May 23 2017
a(n) ~ 2^(6*n+1) / (Pi*n)^2. - Vaclav Kotesovec, Nov 13 2017
From Bradley Klee, Aug 20 2018: (Start)
G.f.: Define G(x) = Sum_{n>=0} a(n)*x^n and G^(j) = (d/dx)^j G(x), then Sum_{j=0..4,k=0..5} M_{j,k}*G^(j)*x^k = 0, with
M={{-8, 768, 0, 0, 0, 0}, {1, -424, 14592, 0, 0, 0}, {0, 7, -1172, 25344, 0, 0}, {0, 0, 6, -640, 10240, 0}, {0, 0, 0, 1, -80, 1024}}.
Sum_{j=0..2,k=0..4} M_{j,k}*a(n-j)*n^k = 0, with
M={{0, 0, 0, 0, 1}, {-8, 52, -132, 160, -80}, {768, -3584, 5888, -4096, 1024}}.
(End)
a(n) = Sum_{i+j+k+l=n, 0<=i,j,k,l<=n} multinomial(2n [i,i,j,j,k,k,l,l]). - Shel Kaphan, Jan 16 2023