A039715 Primes modulo 17.
2, 3, 5, 7, 11, 13, 0, 2, 6, 12, 14, 3, 7, 9, 13, 2, 8, 10, 16, 3, 5, 11, 15, 4, 12, 16, 1, 5, 7, 11, 8, 12, 1, 3, 13, 15, 4, 10, 14, 3, 9, 11, 4, 6, 10, 12, 7, 2, 6, 8, 12, 1, 3, 13, 2, 8, 14, 16, 5, 9, 11, 4, 1, 5, 7, 11, 8, 14, 7, 9, 13, 2, 10, 16, 5
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[p mod(17): p in PrimesUpTo(500)]; // Vincenzo Librandi, May 06 2014
-
Maple
seq(ithprime(n) mod 17, n=1..100); # Nathaniel Johnston, Jun 29 2011
-
Mathematica
Table[Mod[Prime[n], 17], {n, 100}] (* Nathaniel Johnston, Jun 29 2011 *) Mod[Prime[Range[100]], 17] (* Vincenzo Librandi, May 06 2014 *)
-
PARI
primes(100)%17 \\ Charles R Greathouse IV, Apr 16 2012
-
Sage
[mod(p, 17) for p in primes(500)] # Bruno Berselli, May 05 2014
Formula
By the Prime Number Theorem in Arithmetic Progressions, all nonzero residue classes are equiprobable. In particular, Sum_{k=1..n} a(k) ~ 8.5n. - Charles R Greathouse IV, Apr 16 2012