A039744 Number of ways n*(n-1) can be partitioned into the sum of 2*(n-1) integers in the range 0..n.
1, 1, 2, 5, 18, 73, 338, 1656, 8512, 45207, 246448, 1371535, 7764392, 44585180, 259140928, 1521967986, 9020077206, 53885028921, 324176252022, 1962530559999, 11947926290396, 73108804084505, 449408984811980, 2774152288318052, 17190155366056138, 106894140685782646
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150 (terms n=1..65 from T. D. Noe)
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
n, 0, b(n-i, i, t-1)))) end: a:= n-> b(n*(n-1), n, 2*(n-1)): seq(a(n), n=0..25); # Alois P. Heinz, May 15 2016 -
Mathematica
T[0,p_,m_]=1; T[k_,0,m_]=0; T[k_,p_,m_]:=T[k,p,m]=Sum[T[k+i,p-1,-i], {i,-m,-1}]; Table[T[n(n-1),2n-2,n], {n,40}] (* T. D. Noe, Dec 19 2006 *)
-
PARI
a039744(n) = polcoef(matpascal(3*n-1, x)[3*n-1, n+1], n*(n-1)); \\ Max Alekseyev, Jun 16 2023
-
Sage
def a039744(n): return gaussian_binomial(3*n-2, n)[n*(n-1)] # Max Alekseyev, Jun 16 2023
Formula
a(n) = T(n(n+1),2n-2,n), where T(k,p,m) is a recursive function that gives the number of partitions of k into p parts of 0..m. It is defined T(k,p,m) = sum_{i=1..m} T(k-i,p-1,i), with the boundary conditions T(0,p,m)=1 and T(k,0,m)=0 for all positive k, p and m. - T. D. Noe, Dec 19 2006
a(n) = coefficient of q^(n*(n-1)) in q-binomial(3*n-2, n). - Max Alekseyev, Jun 16 2023
a(n) ~ 3^(3*n - 3/2) / (Pi * n^2 * 2^(2*n - 1)). - Vaclav Kotesovec, Jun 17 2023
Extensions
Definition corrected by Jozsef Pelikan (pelikan(AT)cs.elte.hu), Dec 05 2006
More terms from T. D. Noe, Dec 19 2006
a(0)=1 prepended by Alois P. Heinz, May 15 2016
Comments