cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039744 Number of ways n*(n-1) can be partitioned into the sum of 2*(n-1) integers in the range 0..n.

Original entry on oeis.org

1, 1, 2, 5, 18, 73, 338, 1656, 8512, 45207, 246448, 1371535, 7764392, 44585180, 259140928, 1521967986, 9020077206, 53885028921, 324176252022, 1962530559999, 11947926290396, 73108804084505, 449408984811980, 2774152288318052, 17190155366056138, 106894140685782646
Offset: 0

Views

Author

Bill Daly (bill.daly(AT)tradition.co.uk)

Keywords

Comments

An upper bound on A007878.
The indices of the odd terms appear to be A118113. - T. D. Noe, Dec 19 2006

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
          n, 0, b(n-i, i, t-1))))
        end:
    a:= n-> b(n*(n-1), n, 2*(n-1)):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 15 2016
  • Mathematica
    T[0,p_,m_]=1; T[k_,0,m_]=0; T[k_,p_,m_]:=T[k,p,m]=Sum[T[k+i,p-1,-i], {i,-m,-1}]; Table[T[n(n-1),2n-2,n], {n,40}] (* T. D. Noe, Dec 19 2006 *)
  • PARI
    a039744(n) = polcoef(matpascal(3*n-1, x)[3*n-1, n+1], n*(n-1)); \\ Max Alekseyev, Jun 16 2023
  • Sage
    def a039744(n): return gaussian_binomial(3*n-2, n)[n*(n-1)] # Max Alekseyev, Jun 16 2023
    

Formula

a(n) = T(n(n+1),2n-2,n), where T(k,p,m) is a recursive function that gives the number of partitions of k into p parts of 0..m. It is defined T(k,p,m) = sum_{i=1..m} T(k-i,p-1,i), with the boundary conditions T(0,p,m)=1 and T(k,0,m)=0 for all positive k, p and m. - T. D. Noe, Dec 19 2006
a(n) = coefficient of q^(n*(n-1)) in q-binomial(3*n-2, n). - Max Alekseyev, Jun 16 2023
a(n) ~ 3^(3*n - 3/2) / (Pi * n^2 * 2^(2*n - 1)). - Vaclav Kotesovec, Jun 17 2023

Extensions

Definition corrected by Jozsef Pelikan (pelikan(AT)cs.elte.hu), Dec 05 2006
More terms from T. D. Noe, Dec 19 2006
a(0)=1 prepended by Alois P. Heinz, May 15 2016