A109692
Triangle of coefficients in expansion of (1+x)*(1+3x)*(1+5x)*(1+7x)*...*(1+(2n-1)x).
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 9, 23, 15, 1, 16, 86, 176, 105, 1, 25, 230, 950, 1689, 945, 1, 36, 505, 3480, 12139, 19524, 10395, 1, 49, 973, 10045, 57379, 177331, 264207, 135135, 1, 64, 1708, 24640, 208054, 1038016, 2924172, 4098240, 2027025
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 3;
1, 9, 23, 15;
1, 16, 86, 176, 105;
1, 25, 230, 950, 1689, 945;
1, 36, 505, 3480, 12139, 19524, 10395;
...
Cf.
A161198 (transposed scaled triangle version).
-
nmax:=8; mmax:=nmax: for n from 0 to nmax do a(n, n) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, 0):=1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := a(n-1,m) + (2*n-1)*a(n-1,m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012
A039762
Triangle of D-analogs of Stirling numbers of first kind.
Original entry on oeis.org
1, 0, 1, 1, -2, 1, -6, 11, -6, 1, 45, -84, 50, -12, 1, -420, 809, -520, 150, -20, 1, 4725, -9390, 6439, -2100, 355, -30, 1, -62370, 127539, -92358, 33019, -6510, 721, -42, 1, 945945, -1984584, 1505524, -578984, 127694, -16856, 1316, -56, 1, -16216200, 34812945, -27491616, 11228300, -2702448, 405174, -38304, 2220, -72, 1
Offset: 0
Ruedi Suter (suter(AT)math.ethz.ch)
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
0, 1;
1, -2, 1;
-6, 11, -6, 1;
45, -84, 50, -12, 1;
-420, 809, -520, 150, -20, 1;
...
-
row(n) = if(n==0, [1], Vecrev(prod(i=1, n-1, x-2*i+1)*(x-n+1))); \\ Petros Hadjicostas, Jul 12 2020
A349226
Triangle read by rows. Row n gives the coefficients of Product_{k=0..n} (x - k^k) expanded in decreasing powers of x, with row 0 = {1}.
Original entry on oeis.org
1, 1, -1, 1, -2, 1, 1, -6, 9, -4, 1, -33, 171, -247, 108, 1, -289, 8619, -44023, 63340, -27648, 1, -3413, 911744, -26978398, 137635215, -197965148, 86400000, 1, -50070, 160195328, -42565306462, 1258841772303, -6421706556188, 9236348345088, -4031078400000
Offset: 0
The triangle begins:
1;
1, -1;
1, -2, 1;
1, -6, 9, -4;
1, -33, 171, -247, 108;
1, -289, 8619, -44023, 63340, -27648;
1, -3413, 911744, -26978398, 137635215, -197965148, 86400000;
...
Row 4: x^4-33*x^3+171*x^2-247*x+108 = (x-1)*(x-1^1)*(x-2^2)*(x-3^3).
Cf.
A008276 (The Stirling numbers of the first kind in reverse order).
Cf.
A039758 (Coefficients for polynomials with roots in odd numbers).
Cf.
A355540 (Coefficients for polynomials with roots in factorials).
-
T(n, k) = polcoeff(prod(m=0, n-1, (x-m^m)), n-k);
A355540
Triangle read by rows. Row n gives the coefficients of Product_{k=0..n} (x - k!) expanded in decreasing powers of x, with row 0 = {1}.
Original entry on oeis.org
1, 1, -1, 1, -2, 1, 1, -4, 5, -2, 1, -10, 29, -32, 12, 1, -34, 269, -728, 780, -288, 1, -154, 4349, -33008, 88140, -93888, 34560, 1, -874, 115229, -3164288, 23853900, -63554688, 67633920, -24883200, 1, -5914, 4520189, -583918448, 15971865420, -120287210688, 320383261440, -340899840000, 125411328000
Offset: 0
The triangle begins:
1;
1, -1;
1, -2, 1;
1, -4, 5, -2;
1, -10, 29, -32, 12;
1, -34, 269, -728, 780, -288;
1, -154, 4349, -33008, 88140, -93888, 34560;
1, -874, 115229, -3164288, 23853900, -63554688, 67633920, -24883200;
...
Row 4: x^4 - 10*x^3 + 29*x^2 - 32*x + 12 = (x-0!)*(x-1!)*(x-2!)*(x-3!).
Illustration of T(1 to 5,1) as tree structure:
.
. o o o o o
. o o o o
. o o o o o o
. ooo ooo ooo ooo
. oooo oooo oooo oooo oooo oooo
. 1 +1 = 2 +2 = 4 +2*3 = 10 +6*4 = 34
.
Illustration of T(2 to 4,2) as tree structure:
.
. o o -----o-----
. o o o o
. o o ---o--- ---o---
. o o o o o o
. o o o o o o
. o o o o o o o o o o o o
. 1 +2*2 = 5 +6*4 = 29
.
Illustration of T(3 to 4,3) as tree structure:
. ------------
. oo ---o--- ---o---
. o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o
. 2 +6*5 = 32
Cf.
A008276 (The Stirling numbers of the first kind in reverse order).
Cf.
A039758 (Coefficients for polynomials with roots in odd numbers).
Cf.
A349226 (Coefficients for polynomials with roots in x^x).
-
T(n, k) = polcoeff(prod(m=0, n-1, (x-m!)), n-k);
Showing 1-4 of 4 results.
Comments