cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039825 a(n) = floor((n^2 + n + 8) / 4).

Original entry on oeis.org

2, 3, 5, 7, 9, 12, 16, 20, 24, 29, 35, 41, 47, 54, 62, 70, 78, 87, 97, 107, 117, 128, 140, 152, 164, 177, 191, 205, 219, 234, 250, 266, 282, 299, 317, 335, 353, 372, 392, 412, 432, 453, 475, 497, 519, 542, 566, 590, 614, 639
Offset: 1

Views

Author

Keywords

Comments

Number of different coefficient values in expansion of Product_{i=1..n} (1 + q^2 + q^4 + ... + q^(2i)).
The given terms have a second difference that is periodic with the period 1, 0, 0, 1, ... of length 4, an implicit recurrence. - John W. Layman, Jan 23 2001
Conjecturally, apart from the first term, the sequence terms are the exponents in the expansion of Sum_{n >= 1} q^(3*n) * (Product_{k >= 2*n} 1 - q^k) = q^3 - q^5 - q^7 + q^9 + q^12 - q^16 - q^20 + + - - .... Cf. A054925. - Peter Bala, Apr 13 2025

Crossrefs

Programs

  • Magma
    [Floor((n^2+n+8)/4): n in [1..50]]; // Bruno Berselli, Jul 25 2012

Formula

O.g.f.: -x*(2*x^4 - 4*x^3 + 4*x^2 - 3*x + 2)/((x-1)^3*(x^2+1)). - R. J. Mathar, Dec 05 2007
a(n) = A039823(n) + 1. - Bruno Berselli, Jul 25 2012
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5). - Wesley Ivan Hurt, May 08 2022