A039825 a(n) = floor((n^2 + n + 8) / 4).
2, 3, 5, 7, 9, 12, 16, 20, 24, 29, 35, 41, 47, 54, 62, 70, 78, 87, 97, 107, 117, 128, 140, 152, 164, 177, 191, 205, 219, 234, 250, 266, 282, 299, 317, 335, 353, 372, 392, 412, 432, 453, 475, 497, 519, 542, 566, 590, 614, 639
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).
Programs
-
Magma
[Floor((n^2+n+8)/4): n in [1..50]]; // Bruno Berselli, Jul 25 2012
Formula
O.g.f.: -x*(2*x^4 - 4*x^3 + 4*x^2 - 3*x + 2)/((x-1)^3*(x^2+1)). - R. J. Mathar, Dec 05 2007
a(n) = A039823(n) + 1. - Bruno Berselli, Jul 25 2012
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5). - Wesley Ivan Hurt, May 08 2022
Comments