cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039835 Indices of triangular numbers which are also heptagonal.

Original entry on oeis.org

1, 10, 493, 3382, 158905, 1089154, 51167077, 350704366, 16475640049, 112925716858, 5305104928861, 36361730124070, 1708227311453353, 11708364174233842, 550043889183050965, 3770056902373173214, 177112424089630957537, 1213946614199987541226
Offset: 1

Views

Author

Keywords

Comments

From Ant King, Oct 19 2011: (Start)
lim(n->Infinity,a(2n+1)/a(2n))=1/2(47+21*sqrt(5)).
lim(n->Infinity,a(2n)/a(2n-1))=1/2(7+3*sqrt(5)).
(End)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,322,-322,-1,1},{1,10,493,3382,158905},16] (* Ant King, Oct 19 2011 *)
  • PARI
    Vec((-2*x^4-9*x^3+161*x^2+9*x+1)/((1-x)*(1-18*x+x^2)*(1+18*x+x^2))+O(x^99))

Formula

G.f.: (-2x^4-9x^3+161x^2+9x+1)/[(1-x)(1-18x+x^2)(1+18x+x^2)].
a(n+2) = 322*a(n+1)-a(n)+160 a(n+1) = 161*a(n)+80+36*(20*a(n)^2+20*a(n)+9)^0.5 - Richard Choulet, Sep 29 2007
From Ant King, Oct 19 2011: (Start)
a(n) = a(n-1)+322a(n-2)-322a(n-3)-a(n-4)+a(n-5).
a(n) = 1/20*sqrt(5)*(( sqrt(5)-(-1)^n)*(2+ sqrt(5))^(2n-1)+( sqrt(5)+(-1)^n)*(2- sqrt(5))^(2n-1)-2* sqrt(5)).
a(n) = floor(1/20* sqrt(5)*(sqrt(5)-(-1)^n)*(2+ sqrt(5))^(2n-1))(End)