cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039921 Continued fraction expansion of w = 2*cos(Pi/7).

Original entry on oeis.org

1, 1, 4, 20, 2, 3, 1, 6, 10, 5, 2, 2, 1, 2, 2, 1, 18, 1, 1, 3, 2, 1, 2, 1, 2, 1, 39, 2, 1, 1, 1, 13, 1, 2, 1, 30, 1, 1, 1, 3, 2, 5, 4, 1, 5, 1, 5, 1, 2, 1, 1, 94, 6, 2, 19, 11, 1, 60, 1, 1, 50, 2, 1, 1, 8, 53, 1, 3, 1, 6, 3, 2, 1, 5, 1, 1, 3, 4, 636, 1, 2, 1, 3, 3, 7, 9, 1, 2, 10, 3, 1, 22, 1, 119, 3
Offset: 0

Views

Author

Keywords

Comments

Arises in the approximation of 14-fold quasipatterns by 14 Fourier modes.

Examples

			w = 1.80193773580483825247220463901489010233183832426371430010712484639886...
Equals 1 + 1/(1 + 1/(4 + 1/(20 + 1/(2 + ...)))). - _Harry J. Smith_, May 31 2009
		

References

  • A. M. Rucklidge & W. J. Rucklidge (preprint) 2002.

Crossrefs

Cf. A160389 (Decimal expansion). - Harry J. Smith, May 31 2009

Programs

  • Mathematica
    ContinuedFraction[2*Cos[Pi/7], 100]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(2*cos(Pi/7)); for (n=0, 20000, write("b039921.txt", n, " ", x[n+1])); } \\ Harry J. Smith, May 31 2009

Formula

w satisfies w^3 - w^2 - 2w + 1 = 0 and so is algebraic.
The other two roots are 2*cos(3 Pi/7) and 2*cos(5 Pi/7); their continued fraction expansions also end in 20, 2, 3, 1, 6, 10, 5, 2, 2, 1, ... which is a(n) for n >= 3. - Greg Dresden, Jul 01 2018