cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A045759 Maris-McGwire numbers: numbers k such that f(k) = f(k+1), where f(k) = sum of digits of k + sum of digits of prime factors of k (including multiplicities).

Original entry on oeis.org

7, 14, 43, 50, 61, 63, 67, 80, 84, 118, 122, 134, 137, 163, 196, 212, 213, 224, 241, 273, 274, 277, 279, 283, 351, 352, 373, 375, 390, 398, 421, 457, 462, 474, 475, 489, 495, 510, 516, 523, 526, 537, 547, 555, 558, 577, 584, 590, 592, 616, 638, 644, 660, 673, 687, 691
Offset: 1

Views

Author

Keywords

Comments

Named "Maris-McGwire-Sosa Numbers" by Keith (1998) after the baseball players Roger Maris, Mark McGwire and Sammy Sosa. Both McGwire and Sosa hit their 62nd home runs for the season, breaking Maris's record of 61 (A006145 is a similarly named sequence). - Amiram Eldar, Jun 27 2021

Examples

			(61, 62) is such a pair, hence the name.
		

Crossrefs

Cf. A006145 (Ruth-Aaron numbers), A039945.

Programs

  • Mathematica
    ds[n_] := Plus @@ IntegerDigits[n]; f[n_] := ds[n] + Total[(fi = FactorInteger[n])[[;; , 2]] *( ds /@fi[[;; , 1]])]; s={}; f1 = 1; Do[f2=f[n]; If[f1 == f2, AppendTo[s, n-1]]; f1 = f2, {n, 2, 700}]; s (* Amiram Eldar, Nov 24 2019 *)
  • Python
    from sympy import factorint
    def sd(n): return sum(map(int, str(n)))
    def  f(n): return sd(n) + sum(sd(p)*e for p, e in factorint(n).items())
    def ok(n): return f(n) == f(n+1)
    print(list(filter(ok, range(692)))) # Michael S. Branicky, Jul 14 2021

Extensions

Corrected and extended by David W. Wilson
Offset corrected by Amiram Eldar, Nov 24 2019

A193314 The smallest k such that the product k*(k+1) is divisible by the first n primes and no others.

Original entry on oeis.org

1, 2, 5, 14, 384, 1715, 714, 633555
Offset: 1

Views

Author

Robert G. Wilson v, Aug 17 2011

Keywords

Comments

a(9)-a(21) do not exist. It seems unlikely that a(n) exists for larger n. [Charles R Greathouse IV, Aug 18 2011]
If a term beyond a(8) exists, it is larger than 2.29*10^25. - Giovanni Resta, Nov 30 2019

Examples

			n  smallest k   k*(k+1) prime factorization
1  1            2
2  2            2*3
3  5            2*3*5
4  14           2*3*5*7
5  384          2^7*3*5*7*11
6  1715         2^2*3*7^3*11*13
7  714          2*3*5*7*11*13*17
8  633555       2^2*3^3*5*7*11^3*13*17*19^2
		

Crossrefs

Programs

  • Haskell
    a193314 n = head [k | k <- [1..], let kk' = a002378 k,
                          mod kk' (a002110 n) == 0, a006530 kk' == a000040 n]
    -- Reinhard Zumkeller, Jun 14 2015
  • Mathematica
    f[n_] := Block[{k = 1, p = Fold[ Times, 1, Prime@ Range@ n], tst = Prime@ Range@ n},While[ First@ Transpose@ FactorInteger[ k*p]!=tst || IntegerQ@ Sqrt[ 4k*p+1], k++]; Floor@ Sqrt[k*p]]; Array[f, 8]
    (* the search for a(9), I also used *) lst = {}; p = Prime@ Range@ 9; Do[ q = {a, b, c, d, e, f, g, h, i}; If[ IntegerQ[ Sqrt[4Times @@ (p^q) + 1]], r = Floor@ Sqrt@ Times @@ (p^q); Print@ r; AppendTo[lst, r]], {i, 9}, {h, 9}, {g, 9}, {f, 10}, {e, 11}, {d, 14}, {c, 16}, {b, 24}, {a, 8}]
  • PARI
    a(n)={
      my(v=[Mod(0,1)],u,P=1,t,g,k);
      forprime(p=2,prime(n),
        P*=p;
        u=List();
        for(i=1,#v,
          listput(u,chinese(v[i],Mod(-1,p)));
          listput(u,chinese(v[i],Mod(0,p)))
        );
        v=0;v=Vec(u)
      );
      v=vecsort(lift(v));
      while(1,
        for(i=1,#v,
          t=(v[i]+k)*(v[i]+k+1)/P;
          if(!t,next);
          while((g=gcd(P,t))>1, t/=g);
            if (t==1, return(v[i]+k))
        );
        k += P
      )
    }; \\ Charles R Greathouse IV, Aug 18 2011
    
Showing 1-2 of 2 results.