cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A039963 The period-doubling sequence A035263 repeated.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

An example of a d-perfect sequence.
Motzkin numbers mod 2. - Benoit Cloitre, Mar 23 2004
Let {a, b, c, c, a, b, a, b, a, b, c, c, a, b, ...} be the fixed point of the morphism: a -> ab, b -> cc, c -> ab, starting from a; then the sequence is obtained by taking a = 1, b = 1, c = 0. - Philippe Deléham, Mar 28 2004
The asymptotic mean of this sequence is 2/3 (Rowland and Yassawi, 2015; Burns, 2016). - Amiram Eldar, Jan 30 2021
The Gilbreath transform of floor(log_2(n)) (A000523). - Thomas Scheuerle, Sep 02 2024

Crossrefs

Motzkin numbers A001006 read mod 2,3,4,5,6,7,8,11: A039963, A039964, A299919, A258712, A299920, A258711, A299918, A258710.

Programs

  • Mathematica
    Flatten[ Nest[ Function[l, {Flatten[(l /. {a -> {a, b}, b -> {c, c}, c -> {a, b}})]}], {a}, 7] /. {a -> {1}, b -> {1}, c -> {0}}] (* Robert G. Wilson v, Feb 26 2005 *)
  • PARI
    A039963(n) = 1 - valuation(n\2+1,2)%2; \\ Max Alekseyev, Oct 23 2021
    
  • Python
    def A039963(n): return ((m:=(n>>1)+1)&-m).bit_length()&1 # Chai Wah Wu, Jan 09 2023

Formula

a(n) = A035263(1+floor(n/2)). - Benoit Cloitre, Mar 23 2004
a(n) = A040039(n) mod 2 = A002212(n+1) mod 2. a(0) = a(1) = 1, for n>=2: a(n) = ( a(n) + Sum_{k=0..n-2} a(k)*a(n-2-k)) mod 2. - Philippe Deléham, Mar 26 2004
a(n) = (A(n+2) - A(n)) mod 2, for A = A019300, A001285, A010060, A010059, A000069, A001969. - Philippe Deléham, Mar 28 2004
a(n) = A001006(n) mod 2. - Christian G. Bower, Jun 12 2005
a(n) = (-1)^n*(A096268(n+1) - A096268(n)). - Johannes W. Meijer, Feb 02 2013
a(n) = 1 - A007814(floor(n/2)+1) mod 2 = A005802(n) mod 2. - Max Alekseyev, Oct 23 2021

Extensions

More terms from Christian G. Bower, Jun 12 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe and Ralf Stephan, Jul 13 2007