A039982 Let phi denote the morphism 0 -> 11, 1 -> 10. This sequence is the limit S(oo) where S(0) = 1; S(n+1) = 1.phi(S(n)).
1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0
Offset: 0
Examples
The first few S(i) are: S(0) = 1 S(1) = 1.10 = 110 S(2) = 1.101011 = 1101011 S(3) = 1.10101110111010 = 110101110111010 ...
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- Martin Klazar and Florian Luca, On integrality and periodicity of the Motzkin numbers.
- Martin Klazar and Florian Luca, On integrality and periodicity of the Motzkin numbers, Aequationes Math. 69 (2005), no. 1-2, 68-75.
- D. Kohel, S. Ling and C. Xing, Explicit Sequence Expansions
- D. Kohel, S. Ling and C. Xing, Explicit Sequence Expansions, Sequences and their Applications, Discrete Mathematics and Theoretical Computer Science 1999, pp 308-317.
- Index entries for characteristic functions
Programs
-
GAP
b:=[1,1,2];; for n in [4..120] do b[n]:=(1/(n+1))* (2*n*b[n-1]+(3*n-7)*b[n-2]-(4*n-10)*b[n-3]);; od; a:=b mod 2; # Muniru A Asiru, Sep 28 2018
-
Mathematica
substitutionRule={1->{1, 0}, 0->{1, 1}}; makeSubstitution[seq_]:=Flatten[seq/.substitutionRule]; Flatten[NestList[makeSubstitution, {1}, 5]] NestList[Flatten[ # /. {0 -> {1, 1}, 1 -> {1, 0}}] &, {1}, 6] // Flatten (* Robert G. Wilson v, Mar 29 2006 *)
-
PARI
a(n)=my(A=1+x); for(i=1, n, A=1/(1-x+x*O(x^n))+x^2*A^2+x*O(x^n)); polcoeff(A, n)%2 \\ Charles R Greathouse IV, Feb 04 2013
-
PARI
up_to = 16384; A090344list(up_to) = { my(v=vector(up_to)); v[1] = 1; v[2] = 2; v[3] = 3; for(n=4,up_to,v[n] = ((2*n+2)*v[n-1] -(4*n-6)*v[n-3] +(3*n-4)*v[n-2])/(n+2)); (v); }; v090344 = A090344list(up_to); A090344(n) = if(!n,1,v090344[n]); A039982(n) = (A090344(n)%2); \\ Antti Karttunen, Sep 27 2018
Formula
a(n) = A090344(n) mod 2. - Christian G. Bower, Jun 12 2005
a(n) = A091090(n+1) mod 2. - Alan Michael Gómez Calderón, Jul 05 2025
Extensions
More terms from Christian G. Bower, Jun 12 2005
Offset corrected from 1 to 0 by Antti Karttunen, Sep 27 2018
Entry revised by N. J. A. Sloane, Feb 23 2019
Comments