A040034 Primes p such that x^3 = 2 has no solution mod p.
7, 13, 19, 37, 61, 67, 73, 79, 97, 103, 139, 151, 163, 181, 193, 199, 211, 241, 271, 313, 331, 337, 349, 367, 373, 379, 409, 421, 463, 487, 523, 541, 547, 571, 577, 607, 613, 619, 631, 661, 673, 709, 751, 757, 769, 787, 823, 829, 853, 859, 877, 883, 907, 937
Offset: 1
Examples
A cube modulo 7 can only be 0, 1 or 6, but not 2, hence the prime 7 is in the sequence. Because x^3 = 2 mod 11 when x = 7 mod 11, the prime 11 is not in the sequence.
Links
- Klaus Brockhaus, Table of n, a(n) for n=1..1000
- David Bernier, A strong primality test based on third-order linear recurrences, ResearchGate (2025). See p. 8
- Steven R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
- Bishnu Paudel and Chris Pinner, The integer group determinants for the abelian groups of order 18, arXiv:2412.10638 [math.NT], 2024. See p. 3.
Programs
-
Magma
[ p: p in PrimesUpTo(937) | forall(t){x : x in ResidueClassRing(p) | x^3 ne 2} ]; // Klaus Brockhaus, Dec 05 2008
-
Mathematica
insolublePrimeQ[p_]:= Reduce[Mod[x^3 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[200]], insolublePrimeQ] (* Vincenzo Librandi Sep 17 2012 *)
-
PARI
forprime(p=2,10^3,if(#polrootsmod(x^3-2,p)==0,print1(p,", "))) \\ Joerg Arndt, Jul 16 2015
Extensions
More terms from Klaus Brockhaus, Dec 05 2008
Comments