A040047 Primes p such that x^3 = 6 has no solution mod p.
13, 19, 31, 43, 61, 67, 73, 79, 97, 103, 109, 127, 151, 157, 193, 199, 211, 223, 229, 271, 277, 283, 331, 367, 373, 397, 433, 457, 463, 487, 523, 547, 577, 601, 613, 619, 661, 673, 691, 709, 733, 739, 757, 769
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Benjamin Braun, Brian Davis, Antichain Simplices, arXiv:1901.01417 [math.CO], 2019.
- Stepan Kochemazov, Oleg Zaikin, Eduard Vatutin, Alexey Belyshev, Enumerating Diagonal Latin Squares of Order Up to 9, J. Int. Seq., Vol. 23 (2020), Article 20.1.2.
Programs
-
Magma
[p: p in PrimesUpTo(1000) | not exists{x : x in ResidueClassRing(p) | x^3 eq 6} ]; // Vincenzo Librandi, Sep 17 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^3 - 6, p] == 0, x, Integers] == False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 17 2012 *)
Comments