A040098 Primes p such that x^4 = 2 has a solution mod p.
2, 7, 23, 31, 47, 71, 73, 79, 89, 103, 113, 127, 151, 167, 191, 199, 223, 233, 239, 257, 263, 271, 281, 311, 337, 353, 359, 367, 383, 431, 439, 463, 479, 487, 503, 577, 593, 599, 601, 607, 617, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Franz Lemmermeyer, Bibliography on Reciprocity Laws
- Index entries for related sequences
Crossrefs
Programs
-
Magma
[ p: p in PrimesUpTo(919) | exists(t){x : x in ResidueClassRing(p) | x^4 eq 2} ]; // Klaus Brockhaus, Dec 02 2008
-
Mathematica
ok[p_] := Reduce[ Mod[x^4 - 2, p] == 0, x, Integers] =!= False; Select[ Prime[ Range[200]], ok] (* Jean-François Alcover, Dec 14 2011 *)
-
PARI
forprime(p=2,2000,if([]~!=polrootsmod(x^4-2,p),print1(p,", ")));print(); \\ Joerg Arndt, Jul 27 2011
Comments