cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A042749 Denominators of continued fraction convergents to sqrt(905).

Original entry on oeis.org

1, 12, 721, 8664, 520561, 6255396, 375844321, 4516387248, 271359079201, 3260825337660, 195920879338801, 2354311377403272, 141454603523535121, 1699809553659824724, 102130027823113018561, 1227260143431016047456, 73737738633684075865921
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[905], 30]] (* Vincenzo Librandi, Jan 28 2014 *)
    LinearRecurrence[{0,722,0,-1},{1,12,721,8664},20] (* Harvey P. Dale, Nov 08 2017 *)

Formula

G.f.: -(x^2-12*x-1) / (x^4-722*x^2+1). - Colin Barker, Dec 22 2013

Extensions

Additional term from Colin Barker, Dec 22 2013

A212655 Denominator of Bernoulli(2*n,1/2) / Period of length 2: repeat 12, 60.

Original entry on oeis.org

1, 4, 112, 64, 2816, 93184, 4096, 278528, 8716288, 2883584
Offset: 1

Views

Author

Paul Curtz, Apr 14 2013

Keywords

Comments

See A165949(n) = (A027642(n+1)=A027762(n))/A165734(n).
a(n) is divisible by 4^(n-1).

Examples

			a(1) = (B(2,1/2)=12)/12=1, a(2)=240/60=4, a(3)=1344/12=112, a(4)=3840/60=64.
		

Crossrefs

Cf. A000302.

Formula

a(n) = A033469(n)/A040874(n).
a(n) = 4^(n-1) * A165949(n).
Showing 1-2 of 2 results.