cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040992 Primes p such that x^6 = 2 has a solution mod p.

Original entry on oeis.org

2, 17, 23, 31, 41, 47, 71, 89, 113, 127, 137, 167, 191, 223, 233, 239, 257, 263, 281, 311, 353, 359, 383, 401, 431, 433, 439, 449, 457, 479, 503, 521, 569, 593, 599, 601, 617, 641, 647, 719, 727, 743, 761, 809, 839, 857, 863, 881, 887, 911, 919, 929, 953
Offset: 1

Views

Author

Keywords

Comments

Complement of A040993 relative to A000040. - Vincenzo Librandi, Sep 13 2012

Crossrefs

For primes p such that x^m == 2 (mod p) has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | exists(t){x : x in ResidueClassRing(p) | x^6 eq 2}]; // Vincenzo Librandi, Sep 13 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^6- 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
  • PARI
    forprime(p=2,2000,if([]~!=polrootsmod(x^6-2,p),print1(p,", ")));print();
    /* Joerg Arndt, Jul 27 2011 */