cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A038873 Primes p such that 2 is a square mod p; or, primes congruent to {1, 2, 7} mod 8.

Original entry on oeis.org

2, 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 367, 383, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593, 599, 601, 607, 617
Offset: 1

Views

Author

Keywords

Comments

Same as A001132 except for initial term.
Primes p such that x^2 = 2 has a solution mod p.
The primes of the form x^2 + 2xy - y^2 coincide with this sequence. These are also primes of the form u^2 - 2v^2. - Tito Piezas III, Dec 28 2008
Therefore these are composite in Z[sqrt(2)], as they can be factored as (u^2 - 2v^2)*(u^2 + 2v^2). - Alonso del Arte, Oct 03 2012
After a(1) = 2, these are the primes p such that p^4 == 1 (mod 96). - Gary Detlefs, Jan 22 2014
Also primes of the form 2v^2 - u^2. For example, 23 = 2*4^2 - 3^2. - Jerzy R Borysowicz, Oct 27 2015
Prime factors of A008865 and A028884. - Klaus Purath, Dec 07 2020

References

  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, Theorem 5-5, p. 68.

Crossrefs

Cf. A057126, A087780, A226523, A003629 (complement).
Primes in A035251.
For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [ p: p in PrimesUpTo(617) | IsSquare(R!2) where R:=ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008
    
  • Maple
    seq(`if`(member(ithprime(n) mod 8, {1,2,7}),ithprime(n),NULL),n=1..113); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    fQ[n_] := MemberQ[{1, 2, 7}, Mod[n, 8]]; Select[ Prime[Range[114]], fQ] (* Robert G. Wilson v, Oct 18 2011 *)
  • PARI
    is(n)=isprime(n) && issquare(Mod(2,n)) \\ Charles R Greathouse IV, Apr 23 2015
    
  • PARI
    is(n)=abs(centerlift(Mod(n,8)))<3 && isprime(n) \\ Charles R Greathouse IV, Nov 14 2017

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Nov 29 2016

A001132 Primes == +-1 (mod 8).

Original entry on oeis.org

7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 367, 383, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593, 599
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2 is a quadratic residue mod p.
Also primes p such that p divides 2^((p-1)/2) - 1. - Cino Hilliard, Sep 04 2004
A001132 is exactly formed by the prime numbers of A118905: in fact at first every prime p of A118905 is p = u^2 - v^2 + 2uv, with for example u odd and v even so that p - 1 = 4u'(u' + 1) + 4v'(2u' + 1 - v') when u = 2u' + 1 and v = 2v'. u'(u' + 1) is even and v'(2u' + 1 - v') is always even. At second hand if p = 8k +- 1, p has the shape x^2 - 2y^2; letting u = x - y and v = y, comes p = (x - y)^2 - y^2 + 2(x - y)y = u^2 - v^2 + 2uv so p is a sum of the two legs of a Pythagorean triangle. - Richard Choulet, Dec 16 2008
These are also the primes of form x^2 - 2y^2, excluding 2. See A038873. - Tito Piezas III, Dec 28 2008
Primes p such that p^2 mod 48 = 1. - Gary Detlefs, Dec 29 2011
Primes in A047522. - Reinhard Zumkeller, Jan 07 2012
This sequence gives the odd primes p which satisfy C(p, x = 0) = +1, where C(p, x) is the minimal polynomial of 2*cos(Pi/p) (see A187360). For the proof see a comment on C(n, 0) in A230075. - Wolfdieter Lang, Oct 24 2013
Each a(n) corresponds to precisely one primitive Pythagorean triangle. For a proof see the W. Lang link, also for a table. See also the comment by Richard Choulet above, where the case u even and v odd has not been considered. - Wolfdieter Lang, Feb 17 2015
Primes p such that p^2 mod 16 = 1. - Vincenzo Librandi, May 23 2016
Rational primes that decompose in the field Q(sqrt(2)). - N. J. A. Sloane, Dec 26 2017

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Ronald S. Irving, Integers, Polynomials, and Rings. New York: Springer-Verlag (2004): 274.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For primes p such that x^m = 2 (mod p) has a solution see A001132 (for m = 2), A040028 (m = 3), A040098 (m = 4), A040159 (m = 5), A040992 (m = 6), A042966 (m = 7), A045315 (m = 8), A049596 (m = 9), A049542 (m = 10) - A049595 (m = 63). Jeff Lagarias (lagarias(AT)umich.edu) points out that all these sequences are different, although this may not be apparent from looking just at the initial terms.
Agrees with A038873 except for initial term.
Union of A007519 and A007522.

Programs

  • Haskell
    a001132 n = a001132_list !! (n-1)
    a001132_list = [x | x <- a047522_list, a010051 x == 1]
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [p: p in PrimesUpTo (600) | p^2 mod 16 eq 1]; // Vincenzo Librandi, May 23 2016
  • Maple
    seq(`if`(member(ithprime(n) mod 8, {1,7}),ithprime(n),NULL),n=1..109); # Nathaniel Johnston, Jun 26 2011
    for n from 1 to 600 do if (ithprime(n)^2 mod 48 = 1) then print(ithprime(n)) fi od. # Gary Detlefs, Dec 29 2011
  • Mathematica
    Select[Prime[Range[250]], MemberQ[{1, 7}, Mod[#, 8]] &]  (* Harvey P. Dale, Apr 29 2011 *)
    Select[Union[8Range[100] - 1, 8Range[100] + 1], PrimeQ] (* Alonso del Arte, May 22 2016 *)
  • PARI
    select(p->p%8==1 ||p%8==7, primes(100)) \\ Charles R Greathouse IV, May 18 2015
    

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, May 18 2015

A040028 Primes p such that x^3 = 2 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 29, 31, 41, 43, 47, 53, 59, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 149, 157, 167, 173, 179, 191, 197, 223, 227, 229, 233, 239, 251, 257, 263, 269, 277, 281, 283, 293, 307, 311, 317, 347, 353, 359, 383, 389, 397, 401, 419, 431, 433
Offset: 1

Views

Author

Keywords

Comments

This is the union of {3}, A003627 (primes congruent to 2 mod 3) and A014752 (primes of the form x^2+27y^2). By Thm. 4.15 of [Cox], p is of the form x^2+27y^2 if and only if p is congruent to 1 mod 3 and 2 is a cubic residue mod p. If p is not congruent to 1 mod 3, then every number is a cubic residue mod p, including 2. - Andrew V. Sutherland, Apr 26 2008
Complement of A040034 relative to A000040. - Vincenzo Librandi, Sep 13 2012

References

  • David A. Cox, "Primes of the Form x^2+ny^2", 1998, John Wiley & Sons.
  • Kenneth Ireland and Michael Rosen, "A Classical Introduction to Modern Number Theory", second ed., 1990, Springer-Verlag.

Crossrefs

Cf. A001132. Number of primes p < 10^n for which 2 is a cubic residue (mod p) is in A097142.
For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [ p: p in PrimesUpTo(433) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 2} ]; // Klaus Brockhaus, Dec 02 2008
    
  • Mathematica
    f[p_] := Block[{k = 2}, While[k < p && Mod[k^3, p] != 2, k++ ]; If[k == p, 0, 1]]; Select[ Prime[ Range[100]], f[ # ] == 1 &] (* Robert G. Wilson v, Jul 26 2004 *)
  • PARI
    select(p->ispower(Mod(2,p),3),primes(100)) \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) ~ (3/2) n log n. - Charles R Greathouse IV, Apr 06 2022

Extensions

Typo corrected to A014752 by Paul Landon (paullandon(AT)hotmail.com), Jan 25 2010

A040098 Primes p such that x^4 = 2 has a solution mod p.

Original entry on oeis.org

2, 7, 23, 31, 47, 71, 73, 79, 89, 103, 113, 127, 151, 167, 191, 199, 223, 233, 239, 257, 263, 271, 281, 311, 337, 353, 359, 367, 383, 431, 439, 463, 479, 487, 503, 577, 593, 599, 601, 607, 617, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919
Offset: 1

Views

Author

Keywords

Comments

For a prime p congruent to 1 mod 8, 2 is a biquadratic residue mod p if and only if there are integers x,y such that x^2 + 64*y^2 = p. 2 is also a biquadratic residue mod 2 and mod p for any prime p congruent to 7 mod 8 and for no other primes. - Fred W. Helenius (fredh(AT)ix.netcom.com), Dec 30 2004
Complement of A040100 relative to A000040. - Vincenzo Librandi, Sep 13 2012

Crossrefs

For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [ p: p in PrimesUpTo(919) | exists(t){x : x in ResidueClassRing(p) | x^4 eq 2} ]; // Klaus Brockhaus, Dec 02 2008
    
  • Mathematica
    ok[p_] := Reduce[ Mod[x^4 - 2, p] == 0, x, Integers] =!= False; Select[ Prime[ Range[200]], ok] (* Jean-François Alcover, Dec 14 2011 *)
  • PARI
    forprime(p=2,2000,if([]~!=polrootsmod(x^4-2,p),print1(p,", ")));print(); \\ Joerg Arndt, Jul 27 2011

A040159 Primes p such that x^5 = 2 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 23, 29, 37, 43, 47, 53, 59, 67, 73, 79, 83, 89, 97, 103, 107, 109, 113, 127, 137, 139, 149, 151, 157, 163, 167, 173, 179, 193, 197, 199, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 277, 283, 293, 307, 313, 317, 337, 347, 349, 353
Offset: 1

Views

Author

Keywords

Crossrefs

Has same beginning as A042991 but is strictly different.
For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [p: p in PrimesUpTo(400) | exists{x: x in ResidueClassRing(p) | x^5 eq 2}]; // Bruno Berselli, Sep 12 2012
  • Mathematica
    ok [p_]:=Reduce[Mod[x^5- 2, p]== 0, x, Integers]=!= False; Select[Prime[Range[180]], ok] (* Vincenzo Librandi, Sep 12 2012 *)

A042966 Primes p such that x^7 = 2 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 47, 53, 59, 61, 67, 73, 79, 83, 89, 97, 101, 103, 107, 109, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 199, 223, 227, 229, 233, 241, 251, 257, 263, 269, 271, 277, 283, 293, 307, 311, 313, 317, 331
Offset: 1

Views

Author

Keywords

Comments

Coincides with sequence of "primes p such that x^49 = 2 has a solution mod p" for first 572 terms, then diverges.
Complement of A042967 relative to A000040. - Vincenzo Librandi, Sep 13 2012
a(98) = 631 is the first such prime that is congruent to 1 (mod 7). - Georg Fischer, Jan 06 2022

Crossrefs

For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [p: p in PrimesUpTo(400) | exists{x: x in ResidueClassRing(p) | x^7 eq 2}]; // Bruno Berselli, Sep 12 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^7 - 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 13 2012 *)

A040993 Primes p such that x^6 = 2 has no solution mod p.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 73, 79, 83, 97, 101, 103, 107, 109, 131, 139, 149, 151, 157, 163, 173, 179, 181, 193, 197, 199, 211, 227, 229, 241, 251, 269, 271, 277, 283, 293, 307, 313, 317, 331, 337, 347, 349, 367, 373, 379, 389, 397, 409
Offset: 1

Views

Author

Keywords

Comments

Complement of A040992 relative to A000040. Coincides for the first 58 terms with A212375, that is the sequence of primes p such that x^18 = 2 has no solution mod p (first divergence is at 433, cf. A059664). Also coincides for the first 58 terms with sequence of primes p such that x^54 = 2 has no solution mod p (first divergence is at 433, cf. A059665). The sequence for x^18 and the sequence for x^54 coincide for the first 379 terms (first divergence is at 3943, cf. A059666). - Klaus Brockhaus, Feb 04 2001

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(500) | forall{x: x in ResidueClassRing(p) | x^6 ne 2}]; // Bruno Berselli, Sep 13 2012
  • Mathematica
    Select[Prime[Range[PrimePi[500]]], ! MemberQ[PowerMod[Range[#], 6, #], Mod[2, #]] &] (* Bruno Berselli, Sep 13 2012 *)
    ok[p_] := Reduce[Mod[x^6 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[80]], ok] (* Vincenzo Librandi, Sep 21 2012 *)

Extensions

A212375 added in the Brockhaus comment from Bruno Berselli, Sep 13 2012

A059664 Primes p such that x^18 = 2 has no solution mod p, but x^6 = 2 has a solution mod p.

Original entry on oeis.org

433, 919, 1423, 1999, 2017, 2143, 2287, 2791, 2953, 3457, 3889, 4177, 4519, 4663, 5113, 5167, 6679, 6967, 8713, 9631, 9649, 9721, 10009, 11863, 12241, 12583, 12799, 13177, 13591, 15913, 16057, 16111, 16561, 16921, 17551, 18127, 18793, 19081
Offset: 1

Views

Author

Klaus Brockhaus, Feb 04 2001

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(20000) | not exists{x: x in ResidueClassRing(p) | x^18 eq 2} and exists{x: x in ResidueClassRing(p) | x^6 eq 2}]; // Vincenzo Librandi, Sep 21 2012
  • Mathematica
    Select[Prime[Range[PrimePi[20000]]], !MemberQ[PowerMod[Range[#], 18, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 6, #], Mod[2, #]]&] (* Vincenzo Librandi, Sep 21 2013 *)

A059665 Primes p such that x^54 = 2 has no solution mod p, but x^6 = 2 has a solution mod p.

Original entry on oeis.org

433, 919, 1423, 1999, 2017, 2143, 2287, 2791, 2953, 3457, 3889, 3943, 4177, 4519, 4663, 5113, 5167, 6679, 6967, 8713, 9631, 9649, 9721, 10009, 11287, 11863, 12241, 12583, 12799, 13177, 13591, 15913, 16057, 16111, 16561, 16921, 17551, 18127
Offset: 1

Views

Author

Klaus Brockhaus, Feb 04 2001

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(20000) | not exists{x: x in ResidueClassRing(p) | x^54 eq 2} and exists{x: x in ResidueClassRing(p) | x^6 eq 2}]; // Vincenzo Librandi, Sep 21 2012
  • Mathematica
    Select[Prime[Range[PrimePi[20000]]], !MemberQ[PowerMod[Range[#], 54, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 6, #], Mod[2, #]] &] (* Vincenzo Librandi, Sep 21 2013 *)

A070183 Primes p such that x^6 = 2 has a solution mod p, but x^(6^2) = 2 has no solution mod p.

Original entry on oeis.org

17, 41, 137, 401, 433, 449, 457, 521, 569, 641, 761, 809, 857, 919, 929, 953, 977, 1361, 1409, 1423, 1657, 1697, 1999, 2017, 2081, 2143, 2153, 2287, 2297, 2417, 2609, 2633, 2729, 2753, 2777, 2791, 2801, 2897, 2953, 3041, 3209, 3329, 3457, 3593, 3617
Offset: 1

Views

Author

Klaus Brockhaus, Apr 29 2002

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5000) | not exists{x: x in ResidueClassRing(p) | x^36 eq 2} and exists{x: x in ResidueClassRing(p) | x^6 eq 2}]; // Vincenzo Librandi, Sep 21 2012
    
  • Maple
    select(p -> isprime(p) and [msolve(x^6=2,p)]<>[] and [msolve(x^36=2,p)]=[] , [seq(i,i=3..10^4,2)]); # Robert Israel, May 13 2018
  • PARI
    forprime(p=2,3700,x=0; while(x
    				
  • PARI
    ok(p, r, k1, k2)={
        if (  Mod(r,p)^((p-1)/gcd(k1,p-1))!=1, return(0) );
        if (  Mod(r,p)^((p-1)/gcd(k2,p-1))==1, return(0) );
        return(1);
    }
    forprime(p=2,10^4, if (ok(p,2,6,6^2),print1(p,", ")));
    /* Joerg Arndt, Sep 21 2012 */
    
  • Python
    from itertools import count, islice
    from sympy import nextprime, is_nthpow_residue
    def A070183_gen(startvalue=2): # generator of terms >= startvalue
        p = max(nextprime(startvalue-1),2)
        while True:
            if is_nthpow_residue(2,6,p) and not is_nthpow_residue(2,36,p):
                yield p
            p = nextprime(p)
    A070183_list = list(islice(A070183_gen(),20)) # Chai Wah Wu, May 02 2024
Showing 1-10 of 10 results.