cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A038873 Primes p such that 2 is a square mod p; or, primes congruent to {1, 2, 7} mod 8.

Original entry on oeis.org

2, 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 367, 383, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593, 599, 601, 607, 617
Offset: 1

Views

Author

Keywords

Comments

Same as A001132 except for initial term.
Primes p such that x^2 = 2 has a solution mod p.
The primes of the form x^2 + 2xy - y^2 coincide with this sequence. These are also primes of the form u^2 - 2v^2. - Tito Piezas III, Dec 28 2008
Therefore these are composite in Z[sqrt(2)], as they can be factored as (u^2 - 2v^2)*(u^2 + 2v^2). - Alonso del Arte, Oct 03 2012
After a(1) = 2, these are the primes p such that p^4 == 1 (mod 96). - Gary Detlefs, Jan 22 2014
Also primes of the form 2v^2 - u^2. For example, 23 = 2*4^2 - 3^2. - Jerzy R Borysowicz, Oct 27 2015
Prime factors of A008865 and A028884. - Klaus Purath, Dec 07 2020

References

  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, Theorem 5-5, p. 68.

Crossrefs

Cf. A057126, A087780, A226523, A003629 (complement).
Primes in A035251.
For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [ p: p in PrimesUpTo(617) | IsSquare(R!2) where R:=ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008
    
  • Maple
    seq(`if`(member(ithprime(n) mod 8, {1,2,7}),ithprime(n),NULL),n=1..113); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    fQ[n_] := MemberQ[{1, 2, 7}, Mod[n, 8]]; Select[ Prime[Range[114]], fQ] (* Robert G. Wilson v, Oct 18 2011 *)
  • PARI
    is(n)=isprime(n) && issquare(Mod(2,n)) \\ Charles R Greathouse IV, Apr 23 2015
    
  • PARI
    is(n)=abs(centerlift(Mod(n,8)))<3 && isprime(n) \\ Charles R Greathouse IV, Nov 14 2017

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Nov 29 2016

A001132 Primes == +-1 (mod 8).

Original entry on oeis.org

7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 367, 383, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593, 599
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2 is a quadratic residue mod p.
Also primes p such that p divides 2^((p-1)/2) - 1. - Cino Hilliard, Sep 04 2004
A001132 is exactly formed by the prime numbers of A118905: in fact at first every prime p of A118905 is p = u^2 - v^2 + 2uv, with for example u odd and v even so that p - 1 = 4u'(u' + 1) + 4v'(2u' + 1 - v') when u = 2u' + 1 and v = 2v'. u'(u' + 1) is even and v'(2u' + 1 - v') is always even. At second hand if p = 8k +- 1, p has the shape x^2 - 2y^2; letting u = x - y and v = y, comes p = (x - y)^2 - y^2 + 2(x - y)y = u^2 - v^2 + 2uv so p is a sum of the two legs of a Pythagorean triangle. - Richard Choulet, Dec 16 2008
These are also the primes of form x^2 - 2y^2, excluding 2. See A038873. - Tito Piezas III, Dec 28 2008
Primes p such that p^2 mod 48 = 1. - Gary Detlefs, Dec 29 2011
Primes in A047522. - Reinhard Zumkeller, Jan 07 2012
This sequence gives the odd primes p which satisfy C(p, x = 0) = +1, where C(p, x) is the minimal polynomial of 2*cos(Pi/p) (see A187360). For the proof see a comment on C(n, 0) in A230075. - Wolfdieter Lang, Oct 24 2013
Each a(n) corresponds to precisely one primitive Pythagorean triangle. For a proof see the W. Lang link, also for a table. See also the comment by Richard Choulet above, where the case u even and v odd has not been considered. - Wolfdieter Lang, Feb 17 2015
Primes p such that p^2 mod 16 = 1. - Vincenzo Librandi, May 23 2016
Rational primes that decompose in the field Q(sqrt(2)). - N. J. A. Sloane, Dec 26 2017

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Ronald S. Irving, Integers, Polynomials, and Rings. New York: Springer-Verlag (2004): 274.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For primes p such that x^m = 2 (mod p) has a solution see A001132 (for m = 2), A040028 (m = 3), A040098 (m = 4), A040159 (m = 5), A040992 (m = 6), A042966 (m = 7), A045315 (m = 8), A049596 (m = 9), A049542 (m = 10) - A049595 (m = 63). Jeff Lagarias (lagarias(AT)umich.edu) points out that all these sequences are different, although this may not be apparent from looking just at the initial terms.
Agrees with A038873 except for initial term.
Union of A007519 and A007522.

Programs

  • Haskell
    a001132 n = a001132_list !! (n-1)
    a001132_list = [x | x <- a047522_list, a010051 x == 1]
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [p: p in PrimesUpTo (600) | p^2 mod 16 eq 1]; // Vincenzo Librandi, May 23 2016
  • Maple
    seq(`if`(member(ithprime(n) mod 8, {1,7}),ithprime(n),NULL),n=1..109); # Nathaniel Johnston, Jun 26 2011
    for n from 1 to 600 do if (ithprime(n)^2 mod 48 = 1) then print(ithprime(n)) fi od. # Gary Detlefs, Dec 29 2011
  • Mathematica
    Select[Prime[Range[250]], MemberQ[{1, 7}, Mod[#, 8]] &]  (* Harvey P. Dale, Apr 29 2011 *)
    Select[Union[8Range[100] - 1, 8Range[100] + 1], PrimeQ] (* Alonso del Arte, May 22 2016 *)
  • PARI
    select(p->p%8==1 ||p%8==7, primes(100)) \\ Charles R Greathouse IV, May 18 2015
    

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, May 18 2015

A040028 Primes p such that x^3 = 2 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 29, 31, 41, 43, 47, 53, 59, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 149, 157, 167, 173, 179, 191, 197, 223, 227, 229, 233, 239, 251, 257, 263, 269, 277, 281, 283, 293, 307, 311, 317, 347, 353, 359, 383, 389, 397, 401, 419, 431, 433
Offset: 1

Views

Author

Keywords

Comments

This is the union of {3}, A003627 (primes congruent to 2 mod 3) and A014752 (primes of the form x^2+27y^2). By Thm. 4.15 of [Cox], p is of the form x^2+27y^2 if and only if p is congruent to 1 mod 3 and 2 is a cubic residue mod p. If p is not congruent to 1 mod 3, then every number is a cubic residue mod p, including 2. - Andrew V. Sutherland, Apr 26 2008
Complement of A040034 relative to A000040. - Vincenzo Librandi, Sep 13 2012

References

  • David A. Cox, "Primes of the Form x^2+ny^2", 1998, John Wiley & Sons.
  • Kenneth Ireland and Michael Rosen, "A Classical Introduction to Modern Number Theory", second ed., 1990, Springer-Verlag.

Crossrefs

Cf. A001132. Number of primes p < 10^n for which 2 is a cubic residue (mod p) is in A097142.
For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [ p: p in PrimesUpTo(433) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 2} ]; // Klaus Brockhaus, Dec 02 2008
    
  • Mathematica
    f[p_] := Block[{k = 2}, While[k < p && Mod[k^3, p] != 2, k++ ]; If[k == p, 0, 1]]; Select[ Prime[ Range[100]], f[ # ] == 1 &] (* Robert G. Wilson v, Jul 26 2004 *)
  • PARI
    select(p->ispower(Mod(2,p),3),primes(100)) \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) ~ (3/2) n log n. - Charles R Greathouse IV, Apr 06 2022

Extensions

Typo corrected to A014752 by Paul Landon (paullandon(AT)hotmail.com), Jan 25 2010

A040098 Primes p such that x^4 = 2 has a solution mod p.

Original entry on oeis.org

2, 7, 23, 31, 47, 71, 73, 79, 89, 103, 113, 127, 151, 167, 191, 199, 223, 233, 239, 257, 263, 271, 281, 311, 337, 353, 359, 367, 383, 431, 439, 463, 479, 487, 503, 577, 593, 599, 601, 607, 617, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919
Offset: 1

Views

Author

Keywords

Comments

For a prime p congruent to 1 mod 8, 2 is a biquadratic residue mod p if and only if there are integers x,y such that x^2 + 64*y^2 = p. 2 is also a biquadratic residue mod 2 and mod p for any prime p congruent to 7 mod 8 and for no other primes. - Fred W. Helenius (fredh(AT)ix.netcom.com), Dec 30 2004
Complement of A040100 relative to A000040. - Vincenzo Librandi, Sep 13 2012

Crossrefs

For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [ p: p in PrimesUpTo(919) | exists(t){x : x in ResidueClassRing(p) | x^4 eq 2} ]; // Klaus Brockhaus, Dec 02 2008
    
  • Mathematica
    ok[p_] := Reduce[ Mod[x^4 - 2, p] == 0, x, Integers] =!= False; Select[ Prime[ Range[200]], ok] (* Jean-François Alcover, Dec 14 2011 *)
  • PARI
    forprime(p=2,2000,if([]~!=polrootsmod(x^4-2,p),print1(p,", ")));print(); \\ Joerg Arndt, Jul 27 2011

A040159 Primes p such that x^5 = 2 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 23, 29, 37, 43, 47, 53, 59, 67, 73, 79, 83, 89, 97, 103, 107, 109, 113, 127, 137, 139, 149, 151, 157, 163, 167, 173, 179, 193, 197, 199, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 277, 283, 293, 307, 313, 317, 337, 347, 349, 353
Offset: 1

Views

Author

Keywords

Crossrefs

Has same beginning as A042991 but is strictly different.
For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [p: p in PrimesUpTo(400) | exists{x: x in ResidueClassRing(p) | x^5 eq 2}]; // Bruno Berselli, Sep 12 2012
  • Mathematica
    ok [p_]:=Reduce[Mod[x^5- 2, p]== 0, x, Integers]=!= False; Select[Prime[Range[180]], ok] (* Vincenzo Librandi, Sep 12 2012 *)

A059667 Primes p such that x^49 = 2 has no solution mod p, but x^7 = 2 has a solution mod p.

Original entry on oeis.org

4999, 6959, 7351, 11467, 15583, 16073, 20483, 21169, 21757, 30773, 35771, 37339, 38711, 41161, 45179, 46649, 48119, 51157, 51647, 57527, 58997, 64877, 75167, 75853, 80263, 83791, 84869, 85751, 86927, 93983, 95747, 105253, 110251, 115837
Offset: 1

Views

Author

Klaus Brockhaus, Feb 04 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[PrimePi[120000]]], ! MemberQ[PowerMod[Range[#], 49, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 7, #], Mod[2, #]] &] (* Vincenzo Librandi, Sep 21 2013 *)
  • PARI
    forprime(p=2,116000,x=0; while(x
    				
  • PARI
    N=10^6;  default(primelimit,N);
    ok(p, r, k1, k2)={
        if (  Mod(r,p)^((p-1)/gcd(k1,p-1))!=1, return(0) );
        if (  Mod(r,p)^((p-1)/gcd(k2,p-1))==1, return(0) );
        return(1);
    }
    forprime(p=2,N, if (ok(p,2,7,7^2),print1(p,", ")));
    \\ Joerg Arndt, Sep 21 2012

A040992 Primes p such that x^6 = 2 has a solution mod p.

Original entry on oeis.org

2, 17, 23, 31, 41, 47, 71, 89, 113, 127, 137, 167, 191, 223, 233, 239, 257, 263, 281, 311, 353, 359, 383, 401, 431, 433, 439, 449, 457, 479, 503, 521, 569, 593, 599, 601, 617, 641, 647, 719, 727, 743, 761, 809, 839, 857, 863, 881, 887, 911, 919, 929, 953
Offset: 1

Views

Author

Keywords

Comments

Complement of A040993 relative to A000040. - Vincenzo Librandi, Sep 13 2012

Crossrefs

For primes p such that x^m == 2 (mod p) has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | exists(t){x : x in ResidueClassRing(p) | x^6 eq 2}]; // Vincenzo Librandi, Sep 13 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^6- 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
  • PARI
    forprime(p=2,2000,if([]~!=polrootsmod(x^6-2,p),print1(p,", ")));print();
    /* Joerg Arndt, Jul 27 2011 */
    

A042967 Primes p such that x^7 = 2 has no solution mod p.

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 659, 701, 743, 757, 827, 883, 911, 967, 1009, 1051, 1093, 1289, 1303, 1373, 1429, 1471, 1499, 1583, 1597, 1667, 1723, 1877, 1933, 2017, 2087, 2129, 2213, 2269, 2297, 2311, 2339, 2381, 2423, 2437, 2521
Offset: 1

Views

Author

Keywords

Comments

Complement of A042966 relative to A000040. Coincides for the first 96 terms with the sequence of primes p such that x^49 = 2 has no solution mod p (first divergence is at 4999, cf. A059667). - Klaus Brockhaus, Feb 04 2001

Examples

			x^7 = 2 has no solution mod 29, so 29 is in the sequence.
8^7 = 2097152 and (2097152 - 2)/31 = 67650, so 31 is not in the sequence.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | forall{x: x in ResidueClassRing(p) | x^7 ne 2}]; // Vincenzo Librandi, Aug 21 2012
    
  • Magma
    [p: p in PrimesUpTo(2600) | not exists{x : x in ResidueClassRing(p) | x^7 eq 2} ]; // Vincenzo Librandi, Sep 19 2012
  • Mathematica
    sevPow2ModPQ[p_] := Reduce[Mod[x^7 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[700]], sevPow2ModPQ] (* Vincenzo Librandi, Sep 19 2012 *)

A216881 Primes p such that x^7 = 3 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 47, 53, 59, 61, 67, 73, 79, 83, 89, 97, 101, 103, 107, 109, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 199, 223, 227, 229, 233, 241, 251, 257, 263, 269, 271, 277, 283, 293, 307, 311, 313, 317
Offset: 1

Views

Author

Vincenzo Librandi, Sep 19 2012

Keywords

Comments

Complement of A042969 relative to A000040.
Differs from A042966 first at index 98. - R. J. Mathar, Mar 13 2013

Programs

  • Magma
    [p: p in PrimesUpTo(500) | exists(t){x: x in ResidueClassRing(p) | x^7 eq 3}];
  • Mathematica
    ok[p_] := Reduce[Mod[x^7 - 3, p] == 0, x, Integers] =!= False; Select[Prime[Range[150]], ok]

A270802 Primes p of the form 14*k+1 for which there is a solution to x^7 == 2 mod p.

Original entry on oeis.org

631, 673, 953, 1163, 1709, 2003, 2143, 2731, 2857, 3109, 3389, 3739, 4271, 4999, 5237, 5279, 5531, 5867, 6553, 6679, 6959, 7001, 7309, 7351, 7393, 8191, 8681, 9157, 9829, 10627, 10739, 11117, 11243, 11299, 11411, 11467, 13007, 13259, 15121, 15233, 15583, 16073, 18439, 18803, 20063, 20147
Offset: 1

Views

Author

N. J. A. Sloane, Apr 01 2016

Keywords

Crossrefs

Cf. A042966.

Programs

  • Magma
    [p: p in PrimesUpTo(50000) | IsOne(p mod 14) and exists{x: x in ResidueClassRing(p) | x^7 eq 2}]; // Bruno Berselli, Apr 02 2016
    
  • Maple
    ans:=[];
    M:=10000;
    e:=7; r:=2;
    for k from 2 to M do
        p:=ithprime(k);
        if p mod 14 = 1 then
           for x from 2 to p-1 do
              if x^e mod p = r then
                 ans:=[op(ans),p];
                 break;
              end if;
           end do:
        end if;
    end do:
    ans;
    # Alternative:
    select(p -> isprime(p) and numtheory:-mroot(2,7,p)<>FAIL, [seq(14*i+1,i=1..3000)]); # Robert Israel, Apr 03 2018
  • Mathematica
    Select[Select[14 Range[10^3] + 1, PrimeQ], Function[p, AnyTrue[Range[2, 10^4], Mod[#^7, p] == 2 &]]] (* Michael De Vlieger, Apr 02 2016, Version 10 *)
  • PARI
    forprime(p=2,10^5,if(p%14!=1,next);if(Mod(2,p)^((p-1)/7)==1,print1(p,", "))); \\ Joerg Arndt, Apr 03 2016
Showing 1-10 of 10 results.