A059667 Primes p such that x^49 = 2 has no solution mod p, but x^7 = 2 has a solution mod p.
4999, 6959, 7351, 11467, 15583, 16073, 20483, 21169, 21757, 30773, 35771, 37339, 38711, 41161, 45179, 46649, 48119, 51157, 51647, 57527, 58997, 64877, 75167, 75853, 80263, 83791, 84869, 85751, 86927, 93983, 95747, 105253, 110251, 115837
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..76
Programs
-
Mathematica
Select[Prime[Range[PrimePi[120000]]], ! MemberQ[PowerMod[Range[#], 49, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 7, #], Mod[2, #]] &] (* Vincenzo Librandi, Sep 21 2013 *)
-
PARI
forprime(p=2,116000,x=0; while(x
-
PARI
N=10^6; default(primelimit,N); ok(p, r, k1, k2)={ if ( Mod(r,p)^((p-1)/gcd(k1,p-1))!=1, return(0) ); if ( Mod(r,p)^((p-1)/gcd(k2,p-1))==1, return(0) ); return(1); } forprime(p=2,N, if (ok(p,2,7,7^2),print1(p,", "))); \\ Joerg Arndt, Sep 21 2012
Comments