cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A040992 Primes p such that x^6 = 2 has a solution mod p.

Original entry on oeis.org

2, 17, 23, 31, 41, 47, 71, 89, 113, 127, 137, 167, 191, 223, 233, 239, 257, 263, 281, 311, 353, 359, 383, 401, 431, 433, 439, 449, 457, 479, 503, 521, 569, 593, 599, 601, 617, 641, 647, 719, 727, 743, 761, 809, 839, 857, 863, 881, 887, 911, 919, 929, 953
Offset: 1

Views

Author

Keywords

Comments

Complement of A040993 relative to A000040. - Vincenzo Librandi, Sep 13 2012

Crossrefs

For primes p such that x^m == 2 (mod p) has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | exists(t){x : x in ResidueClassRing(p) | x^6 eq 2}]; // Vincenzo Librandi, Sep 13 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^6- 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
  • PARI
    forprime(p=2,2000,if([]~!=polrootsmod(x^6-2,p),print1(p,", ")));print();
    /* Joerg Arndt, Jul 27 2011 */
    

A059664 Primes p such that x^18 = 2 has no solution mod p, but x^6 = 2 has a solution mod p.

Original entry on oeis.org

433, 919, 1423, 1999, 2017, 2143, 2287, 2791, 2953, 3457, 3889, 4177, 4519, 4663, 5113, 5167, 6679, 6967, 8713, 9631, 9649, 9721, 10009, 11863, 12241, 12583, 12799, 13177, 13591, 15913, 16057, 16111, 16561, 16921, 17551, 18127, 18793, 19081
Offset: 1

Views

Author

Klaus Brockhaus, Feb 04 2001

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(20000) | not exists{x: x in ResidueClassRing(p) | x^18 eq 2} and exists{x: x in ResidueClassRing(p) | x^6 eq 2}]; // Vincenzo Librandi, Sep 21 2012
  • Mathematica
    Select[Prime[Range[PrimePi[20000]]], !MemberQ[PowerMod[Range[#], 18, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 6, #], Mod[2, #]]&] (* Vincenzo Librandi, Sep 21 2013 *)

A059665 Primes p such that x^54 = 2 has no solution mod p, but x^6 = 2 has a solution mod p.

Original entry on oeis.org

433, 919, 1423, 1999, 2017, 2143, 2287, 2791, 2953, 3457, 3889, 3943, 4177, 4519, 4663, 5113, 5167, 6679, 6967, 8713, 9631, 9649, 9721, 10009, 11287, 11863, 12241, 12583, 12799, 13177, 13591, 15913, 16057, 16111, 16561, 16921, 17551, 18127
Offset: 1

Views

Author

Klaus Brockhaus, Feb 04 2001

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(20000) | not exists{x: x in ResidueClassRing(p) | x^54 eq 2} and exists{x: x in ResidueClassRing(p) | x^6 eq 2}]; // Vincenzo Librandi, Sep 21 2012
  • Mathematica
    Select[Prime[Range[PrimePi[20000]]], !MemberQ[PowerMod[Range[#], 54, #], Mod[2, #]] && MemberQ[PowerMod[Range[#], 6, #], Mod[2, #]] &] (* Vincenzo Librandi, Sep 21 2013 *)

A059666 Primes p such that x^54 = 2 has no solution mod p, but x^18 = 2 has a solution mod p.

Original entry on oeis.org

3943, 11287, 20143, 23599, 25759, 26407, 29863, 32833, 33751, 38287, 39367, 39799, 46441, 47737, 47791, 59887, 62047, 63127, 68311, 73063, 79273, 82351, 84457, 84673, 88129, 90289, 91639, 93529, 94447, 101089, 104761, 107839, 140617, 144073, 146449, 150607
Offset: 1

Views

Author

Klaus Brockhaus, Feb 05 2001

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(40000) | not exists{x: x in ResidueClassRing(p) | x^54 eq 2} and exists{x: x in ResidueClassRing(p) | x^18 eq 2}]; // Vincenzo Librandi, Sep 21 2012
  • Mathematica
    Select[Prime[Range[PrimePi[200000]]],!MemberQ[PowerMod[Range[#],54,#],Mod[2,#]] && MemberQ[PowerMod[Range[#],18,#],Mod[2,#]]&] (* Vincenzo Librandi, Sep 21 2013 *)

Extensions

More terms from Vincenzo Librandi, Sep 21 2013

A212375 Primes p such that x^18 = 2 has no solution mod p.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 73, 79, 83, 97, 101, 103, 107, 109, 131, 139, 149, 151, 157, 163, 173, 179, 181, 193, 197, 199, 211, 227, 229, 241, 251, 269, 271, 277, 283, 293, 307, 313, 317, 331, 337, 347, 349, 367, 373, 379, 389, 397
Offset: 1

Views

Author

Bruno Berselli, Sep 13 2012

Keywords

Comments

Complement of A049550 relative to A000040.
This sequence is not the same as A040993. First disagreement at index 59: a(59)=433, A040993(59)=443.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(500) | forall{x: x in ResidueClassRing(p) | x^18 ne 2}];
    
  • Magma
    [p: p in PrimesUpTo(400) | not exists{x : x in ResidueClassRing(p) | x^18 eq 2} ]; // Vincenzo Librandi, Sep 20 2012
  • Mathematica
    Select[Prime[Range[PrimePi[500]]], ! MemberQ[PowerMod[Range[#], 18, #], Mod[2, #]] &]
    ok[p_]:= Reduce[Mod[x^18 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[80]], ok] (* Vincenzo Librandi, Sep 20 2012  *)
Showing 1-5 of 5 results.