A040996 Maximum number of distinct functions at the bottom of a Boolean (or Binary) Decision Diagram (or BDD) with negation by pointer complementation.
1, 6, 120, 32640, 2147450880, 9223372034707292160, 170141183460469231722463931679029329920, 57896044618658097711785492504343953926464851149359812787997104700240680714240
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..12
- Cezar Campeanu, Nelma Moreira, and Rogerio Reis, Expected Compression Ratio for DFCA: experimental average case analysis, Technical Report Series: DCC-2011-07, December 2011, Departamento de Ciencia de Computadores, Universidade do Porto.
- Dagstuhl Seminar Design & Test, More about BDD's
- Alan J. Hu, David L. Dill, Andreas J. Drexler and C. Han Yang, Higher-level specification and verification with BDDs, In: von Bochmann G., Probst D.K. (eds) Computer Aided Verification. CAV 1992. Lecture Notes in Computer Science (1993), vol 663. Springer, Berlin, Heidelberg.
Programs
-
Magma
[2^(2^n)*(2^(2^n)-1)/2: n in [0..10]]; // Vincenzo Librandi, Sep 30 2011
-
Maple
a(n) = subs(t=2,modp(expand(t^(2^n-1)*(t+1)^(2^n-1)),2)); # Luis H. Gallardo, Nov 18 2021
-
Mathematica
f[x_]:=Module[{c=2^(2^x)},(c(c-1))/2]; Array[f,10,0] (* Harvey P. Dale, Sep 29 2011 *)
-
PARI
a(n)=if(n<=0,n==0,2^(2^n)*(2^(2^n)-1)/2)
Formula
a(n) = (S(n-1) + 1) * (2*S(n-1) + 1) where S(n-1) = Sum_{k
a(n) is the (2^(2^n)-1)-th triangular number; i.e., a(n) = 2^(2^n)*(2^(2^n)-1)/2.
a(n) = A111403(n) / 2. - Tilman Piesk, Oct 04 2024
Comments