cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041022 Numerators of continued fraction convergents to sqrt(15).

Original entry on oeis.org

3, 4, 27, 31, 213, 244, 1677, 1921, 13203, 15124, 103947, 119071, 818373, 937444, 6443037, 7380481, 50725923, 58106404, 399364347, 457470751, 3144188853, 3601659604, 24754146477, 28355806081
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[15],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *)
    Numerator[Convergents[Sqrt[15], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
    a0[n_] := (-((4-Sqrt[15])^n*(3+Sqrt[15]))+(-3+Sqrt[15])*(4+Sqrt[15])^n)/2 // Simplify
    a1[n_] := ((4-Sqrt[15])^n+(4+Sqrt[15])^n)/2 // Simplify
    Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)

Formula

G.f.: (3+4*x+3*x^2-x^3)/(1-8*x^2+x^4).
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = (-((4-sqrt(15))^n*(3+sqrt(15)))+(-3+sqrt(15))*(4+sqrt(15))^n)/2.
a1(n) = ((4-sqrt(15))^n+(4+sqrt(15))^n)/2. (End)