A041022 Numerators of continued fraction convergents to sqrt(15).
3, 4, 27, 31, 213, 244, 1677, 1921, 13203, 15124, 103947, 119071, 818373, 937444, 6443037, 7380481, 50725923, 58106404, 399364347, 457470751, 3144188853, 3601659604, 24754146477, 28355806081
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,8,0,-1).
Programs
-
Mathematica
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[15],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *) Numerator[Convergents[Sqrt[15], 30]] (* Vincenzo Librandi, Oct 28 2013 *) a0[n_] := (-((4-Sqrt[15])^n*(3+Sqrt[15]))+(-3+Sqrt[15])*(4+Sqrt[15])^n)/2 // Simplify a1[n_] := ((4-Sqrt[15])^n+(4+Sqrt[15])^n)/2 // Simplify Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
Formula
G.f.: (3+4*x+3*x^2-x^3)/(1-8*x^2+x^4).
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = (-((4-sqrt(15))^n*(3+sqrt(15)))+(-3+sqrt(15))*(4+sqrt(15))^n)/2.
a1(n) = ((4-sqrt(15))^n+(4+sqrt(15))^n)/2. (End)