A041026 Numerators of continued fraction convergents to sqrt(18).
4, 17, 140, 577, 4756, 19601, 161564, 665857, 5488420, 22619537, 186444716, 768398401, 6333631924, 26102926097, 215157040700, 886731088897, 7309005751876, 30122754096401, 248291038523084
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Index entries for linear recurrences with constant coefficients, signature (0,34,0,-1).
Programs
-
Mathematica
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[18],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *) Numerator[Convergents[Sqrt[18],20]] (* or *) LinearRecurrence[{0,34,0,-1},{4,17,140,577},20] (* Harvey P. Dale, Jun 12 2014 *) a0[n_] := ((-4-3*Sqrt[2])/(17+12*Sqrt[2])^n+(-4+3*Sqrt[2])*(17+12*Sqrt[2])^n)/2 // Simplify a1[n_] := (1/(17+12*Sqrt[2])^n+(17+12*Sqrt[2])^n)/2 // Simplify Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* Gerry Martens, Jul 11 2015 *)
Formula
G.f.: (4+17*x+4*x^2-x^3)/(1-34*x^2+x^4). - Colin Barker, Jan 02 2012
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = ((-4-3*sqrt(2))/(17+12*sqrt(2))^n+(-4+3*sqrt(2))*(17+12*sqrt(2))^n)/2.
a1(n) = (1/(17+12*sqrt(2))^n+(17+12*sqrt(2))^n)/2. (End)