cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041043 Denominators of continued fraction convergents to sqrt(27).

Original entry on oeis.org

1, 5, 51, 260, 2651, 13515, 137801, 702520, 7163001, 36517525, 372338251, 1898208780, 19354426051, 98670339035, 1006057816401, 5128959421040, 52295652026801, 266607219555045, 2718367847577251, 13858446457441300
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[27],50]] (* Harvey P. Dale, Apr 22 2012 *)
    CoefficientList[Series[- (x^2 - 5 x - 1)/(x^4 - 52 x^2 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 22 2013 *)
    a0[n_] := (9+5*Sqrt[3]+(9-5*Sqrt[3])*(26+15*Sqrt[3])^(2*n))/(18*(26+15*Sqrt[3])^n) // Simplify
    a1[n_] := (-1+(26+15*Sqrt[3])^(2*n))/(6*Sqrt[3]*(26+15*Sqrt[3])^n) // FullSimplify
    Flatten[MapIndexed[{a0[#],a1[#]}&,Range[10]]] (* Gerry Martens, Jul 10 2015 *)

Formula

a(n) = 52*a(n-2)-a(n-4). G.f.: -(x^2-5*x-1)/(x^4-52*x^2+1). - Colin Barker, Jul 15 2012
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((9+5*sqrt(3))/(26+15*sqrt(3))^n+(9-5*sqrt(3))*(26+15*sqrt(3))^n)/18.
a1(n) = (-1/(26+15*sqrt(3))^n+(26+15*sqrt(3))^n)/(6*sqrt(3)). (End)