A041059 Denominators of continued fraction convergents to sqrt(35).
1, 1, 11, 12, 131, 143, 1561, 1704, 18601, 20305, 221651, 241956, 2641211, 2883167, 31472881, 34356048, 375033361, 409389409, 4468927451, 4878316860, 53252096051, 58130412911, 634556225161, 692686638072, 7561422605881, 8254109243953, 90102515045411
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Lehmer Number
- Index entries for linear recurrences with constant coefficients, signature (0,12,0,-1).
Programs
-
Mathematica
Denominator[Convergents[Sqrt[35], 30]] (* Vincenzo Librandi, Oct 23 2013 *)
Formula
G.f.: (1+x-x^2)/(1-12*x^2+x^4). - Colin Barker, Jan 01 2012
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(10) + sqrt(14) )/2 and beta = ( sqrt(10) - sqrt(14) )/2 be the roots of the equation x^2 - sqrt(10)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 10 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 10*a(2*n) + a(2*n - 1). (End)
Comments