cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A077417 Chebyshev T-sequence with Diophantine property.

Original entry on oeis.org

1, 11, 131, 1561, 18601, 221651, 2641211, 31472881, 375033361, 4468927451, 53252096051, 634556225161, 7561422605881, 90102515045411, 1073668757939051, 12793922580223201, 152453402204739361, 1816646903876649131, 21647309444315050211
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

7*a(n)^2 - 5*b(n)^2 = 2 with companion sequence b(n) = A077416(n), n>=0.
a(n) = L(n,12), where L is defined as in A108299; see also A077416 for L(n,-12). - Reinhard Zumkeller, Jun 01 2005
[a(n), A004191(n)] = the 2 X 2 matrix [1,10; 1,11]^(n+1) * [1,0]. - Gary W. Adamson, Mar 19 2008
Hankel transform of A174227. - Paul Barry, Mar 12 2010
Alternate denominators of the continued fraction convergents to sqrt(35), see A041059. - James R. Buddenhagen, May 20 2010
For positive n, a(n) equals the permanent of the (2n)X(2n) tridiagonal matrix with sqrt(10)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Positive values of x (or y) satisfying x^2 - 12xy + y^2 + 10 = 0. - Colin Barker, Feb 09 2014
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jun 29 2019

Examples

			G.f. = 1 + 11*x + 131*x^2 + 1561*x^3 + 18601*x^4 221651*x^5 + 2641211*x^6 + ...
		

Crossrefs

Cf. A072256(n) with companion A054320(n-1), n>=1.
Row 12 of array A094954.
Cf. A004191.
Cf. A041059. [James R. Buddenhagen, May 20 2010]
Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,11]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
    
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 12 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
    LinearRecurrence[{12,-1},{1,11},30] (* Harvey P. Dale, Apr 09 2015 *)
    a[ n_] := With[{x = Sqrt[7/2]}, ChebyshevT[2 n + 1, x]/x] // Expand; (* Michael Somos, Jun 29 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-12*x+x^2)) \\ G. C. Greubel, Jan 18 2018
    
  • PARI
    {a(n) = my(x = quadgen(56)/2); simplify(polchebyshev(2*n + 1, 1, x)/x)}; /* Michael Somos, Jun 29 2019 */

Formula

a(n) = 12*a(n-1) - a(n-2), a(-1)=1, a(0)=1.
a(n) = S(n, 12) - S(n-1, 12) = T(2*n+1, sqrt(14)/2)/(sqrt(14)/2) with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 12)=A004191(n).
G.f.: (1-x)/(1-12*x+x^2).
a(n) = (ap^(2*n+1) + am^(2*n+1))/sqrt(14) with ap := (sqrt(7)+sqrt(5))/sqrt(2) and am := (sqrt(7)-sqrt(5))/sqrt(2).
a(n) = sqrt((5*A077416(n)^2 + 2)/7).
a(n)*a(n+3) = 120 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
E.g.f.: exp(6*x)*(7*cosh(sqrt(35)*x) + sqrt(35)*sinh(sqrt(35)*x))/7. - Stefano Spezia, Aug 29 2025

Extensions

More terms from Vincenzo Librandi, Feb 10 2014

A192062 Square Array T(ij) read by antidiagonals (from NE to SW) with columns 2j being the denominators of continued fraction convergents to square root of (j^2 + 2j).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 4, 5, 3, 0, 1, 1, 5, 5, 11, 8, 1, 0, 1, 1, 6, 6, 19, 15, 13, 4, 0, 1, 1, 7, 7, 29, 24, 41, 21, 1, 0, 1, 1, 8, 8, 41, 35, 91, 56, 34, 5, 0, 1, 1, 9, 9, 55, 48, 169, 115, 153, 55, 1, 0, 1, 1, 10, 10, 71, 63, 281, 204, 436, 209, 89, 6
Offset: 0

Views

Author

Kenneth J Ramsey, Jun 21 2011

Keywords

Comments

Column j=1 is the Fibonacci sequence A000045. Column 2 is A002530; column 4 is A041011; column 6 is A041023; column 8 is A041039, column 10 is A041059, column 12 is A041083, column 14 is A041111 corresponding the denominators of continued fraction convergents to square root of 3,8,15,24,35,48 and 63.
T(2*i-1,j)*T(2*i,j)^2*T(2*i+1,j)*j/2 appears to be always a triangular number, T(j*T(2*i,j)^2).
T(2*i,j)*T(2*i+1,j)^2*T(2*i+2)*j/2 appears to always equal a triangular number, T(j*T(2*i,j)*T(2*i+2,j)).
Conjecture re relation of A192062 to the sequence of primes: T(2*n,j) = A(n,j)*T(n,j) where A(n,j) is from the square array A191971. There, A(3*n,j) = A(n,j)*B(n,j) where B(n,j) are integers. It appears further that B(5*n,j)=B(n,j)*C(n,j); C(7*n,j)= C(n,j)*D(n,j); D(11*n,j) = D(n,j)*E(n,j); E(13*n,j) = E(n,j)*F(n,j) and F(17*n,j) = F(n,j)*G(n,j) where C(n,j), D(n,j) etc. are all integers. My conjecture is that this property continues indefinitely and follows the sequence of primes.

Examples

			Array as meant by the definition
First column has index j=0
0  0  0   0   0   0   0 ...
1  1  1   1   1   1   1 ...
1  1  1   1   1   1   1 ...
1  2  3   4   5   6   7 ...
2  3  4   5   6   7   8 ...
1  5 11  19  29  41  55 ...
3  8 15  24  35  48  63 ...
1 13 41  91 169 281 433 ...
4 21 56 115 204 329 496 ...
.
.
.
		

Crossrefs

Formula

Each column j is a recursive sequence defined by T(0,j)=0, T(1,j) = 1, T(2i,j)= T(2i-2,j)+T(2i-1,j) and T(2i+1,j) = T(2i-1,j)+j*T(2i,j). Also, T(n+2,j) = (j+2)*T(n,j)-T(n-2,j).
T(2n,j) = Sum(k=1 to n) C(k)*T(2*k,j-1) where the C(k) are the n-th row of the triangle A191579.
T(2*i,j) = T(i,j)*A(i,j) where A(i,j) is from the table A(i,j) of A191971.
T(4*i,j) = (T(2*i+1)^2 - T(2*i-1)^2)/j
T(4*i+2,j) = T(2*i+2,j)^2 - T(2*i,j)^2

Extensions

Corrected and edited by Olivier Gérard, Jul 05 2011

A041058 Numerators of continued fraction convergents to sqrt(35).

Original entry on oeis.org

5, 6, 65, 71, 775, 846, 9235, 10081, 110045, 120126, 1311305, 1431431, 15625615, 17057046, 186196075, 203253121, 2218727285, 2421980406, 26438531345, 28860511751, 315043648855, 343904160606, 3754085254915
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 12*a(n-2)-a(n-4). G.f.: (5+6*x+5*x^2-x^3)/(1-12*x^2+x^4). [Colin Barker, Apr 17 2012]

A177187 Union of A057080 and A001090.

Original entry on oeis.org

1, 1, 9, 8, 71, 63, 559, 496, 4401, 3905, 34649, 30744, 272791, 242047, 2147679, 1905632, 16908641, 15003009, 133121449, 118118440, 1048062951, 929944511, 8251382159, 7321437648, 64962994321, 57641556673, 511452572409, 453811015736, 4026657584951, 3572846569215
Offset: 1

Views

Author

Mark Dols, May 04 2010

Keywords

Comments

Column sums of shifted Pascal-like array:
1..1..10..10..100..100.1000.1000
......-1..-2..-30..-40.-500.-600
................1....3...60..100
.........................-1...-4
-------------------------------- +
1..1...9...8...71...63..559..496
Decimal expansion of ratio n/(n+1) is accumulation of Catalan numbers; (5 +/- sqrt(15)).

Crossrefs

Formula

For n odd a(n) = 10*a(n-1) - a(n-2), for n even a(n) = a(n-1) - a(n-2); with a(0) = 0, a(1) = 1.
G.f.: x*(1+x+x^2) / ( 1-8*x^2+x^4 ). - R. J. Mathar, Nov 11 2011

A162671 For n even a(n) = a(n-1) + a(n-2), for n odd a(n) = 100*a(n-1) + a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 1, 101, 102, 10301, 10403, 1050601, 1061004, 107151001, 108212005, 10928351501, 11036563506, 1114584702101, 1125621265607, 113676711262801, 114802332528408, 11593909964103601, 11708712296632009, 1182465139627304501, 1194173851923936510, 120599850332020955501
Offset: 0

Views

Author

Mark Dols, Jul 10 2009

Keywords

Crossrefs

Partly same as A041059 (and its palindromic partner-sequence A015446). A007318.

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n<2, n, a(n-1)*(1+99*(n mod 2))+a(n-2)) end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Jan 20 2025
  • Mathematica
    LinearRecurrence[{0,102,0,-1},{1,1,101,102},20] (* Harvey P. Dale, May 08 2020 *)

Formula

a(n) = 102*a(n-2)-a(n-4). G.f.: x*(1+x-x^2)/((x^2+10*x-1)*(x^2-10*x-1)). - R. J. Mathar, Jul 14 2009

Extensions

More terms from R. J. Mathar, Jul 14 2009

A164828 Generalized Fibonacci numbers.

Original entry on oeis.org

1, 1, 11, 120, 122, 1331, 1462, 15960, 17413, 190081, 207503, 2265120, 2472614, 26991251, 29463874, 321630000, 351093865, 3832568641, 4183662515, 45669193800, 49852856306, 544197756851, 594050613166, 6484703888520, 7078754501677, 77272248905281
Offset: 1

Views

Author

Mark Dols, Aug 27 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,11,0,11,0,-1},{1,1,11,120,122,1331},30] (* Harvey P. Dale, Jun 14 2014 *)

Formula

For n odd a(n) = 11a(n-2) + a(n-3), for n even a(n) = 11a(n-1)- a(n-3); with a(1,2) = 1 (For Fibonacci sequence: factor 2 instead of 11).
G.f.: x*(1+x+109*x^3-10*x^4)/((1+x^2)*(1-12*x^2+x^4)). [Colin Barker, Jul 27 2012]
Showing 1-6 of 6 results.