A041104 Numerators of continued fraction convergents to sqrt(60).
7, 8, 23, 31, 457, 488, 1433, 1921, 28327, 30248, 88823, 119071, 1755817, 1874888, 5505593, 7380481, 108832327, 116212808, 341257943, 457470751, 6745848457, 7203319208, 21152486873, 28355806081, 418133772007, 446489578088, 1311112928183, 1757602506271
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,62,0,0,0,-1).
Programs
-
Maple
numtheory:-cfrac(sqrt(60),50,'con'): map(numer,con[1..-2]); # Robert Israel, Jun 09 2015
-
Mathematica
Numerator/@Convergents[Sqrt[60],30] (* Harvey P. Dale, Apr 26 2011 *) n0 := LinearRecurrence[{62, -1}, {7, 457}, 10] n1 := LinearRecurrence[{62, -1}, {8, 488}, 10] n2 := LinearRecurrence[{62, -1}, {23, 1433}, 10] n3 := LinearRecurrence[{62, -1}, {31, 1921}, 10] Flatten[MapIndexed[{n0[[#]],n1[[#]],n2[[#]],n3[[#]]} &, Range[10]]] (* Gerry Martens, Jun 09 2015 *) LinearRecurrence[{0, 0, 0, 62, 0, 0, 0, -1},{7, 8, 23, 31, 457, 488, 1433, 1921},28] (* Ray Chandler, Aug 03 2015 *)
Formula
G.f.: -(x^7-7*x^6+8*x^5-23*x^4-31*x^3-23*x^2-8*x-7) / ((x^4-8*x^2+1)*(x^4+8*x^2+1)). - Colin Barker, Nov 05 2013
Extensions
More terms from Colin Barker, Nov 05 2013
Comments