cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041104 Numerators of continued fraction convergents to sqrt(60).

Original entry on oeis.org

7, 8, 23, 31, 457, 488, 1433, 1921, 28327, 30248, 88823, 119071, 1755817, 1874888, 5505593, 7380481, 108832327, 116212808, 341257943, 457470751, 6745848457, 7203319208, 21152486873, 28355806081, 418133772007, 446489578088, 1311112928183, 1757602506271
Offset: 0

Views

Author

Keywords

Comments

Interspersion of 4 linear recurrences with constant coefficients. - Gerry Martens, Jun 10 2015

Crossrefs

Programs

  • Maple
    numtheory:-cfrac(sqrt(60),50,'con'):
    map(numer,con[1..-2]); # Robert Israel, Jun 09 2015
  • Mathematica
    Numerator/@Convergents[Sqrt[60],30]  (* Harvey P. Dale, Apr 26 2011 *)
    n0 := LinearRecurrence[{62, -1}, {7, 457}, 10]
    n1 := LinearRecurrence[{62, -1}, {8, 488}, 10]
    n2 := LinearRecurrence[{62, -1}, {23, 1433}, 10]
    n3 := LinearRecurrence[{62, -1}, {31, 1921}, 10]
    Flatten[MapIndexed[{n0[[#]],n1[[#]],n2[[#]],n3[[#]]} &, Range[10]]] (* Gerry Martens, Jun 09 2015 *)
    LinearRecurrence[{0, 0, 0, 62, 0, 0, 0, -1},{7, 8, 23, 31, 457, 488, 1433, 1921},28] (* Ray Chandler, Aug 03 2015 *)

Formula

G.f.: -(x^7-7*x^6+8*x^5-23*x^4-31*x^3-23*x^2-8*x-7) / ((x^4-8*x^2+1)*(x^4+8*x^2+1)). - Colin Barker, Nov 05 2013

Extensions

More terms from Colin Barker, Nov 05 2013