cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041151 Denominators of continued fraction convergents to sqrt(85).

Original entry on oeis.org

1, 4, 5, 9, 41, 747, 3029, 3776, 6805, 30996, 564733, 2289928, 2854661, 5144589, 23433017, 426938895, 1731188597, 2158127492, 3889316089, 17715391848, 322766369353, 1308780869260, 1631547238613, 2940328107873, 13392859670105, 244011802169763, 989440068349157
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A099371.
For the terms of the periodic sequence of the continued fraction for sqrt(85) see A010158. We observe that its period is five. The decimal expansion of sqrt(85) is A010536. (End)

Crossrefs

Programs

  • Magma
    I:=[1, 4, 5, 9, 41, 747, 3029, 3776, 6805, 30996]; [n le 10 select I[n] else 756*Self(n-5)+Self(n-10): n in [1..30]]; // Vincenzo Librandi, Dec 12 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[85], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[85], 30]] (* Vincenzo Librandi, Dec 12 2013 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A099371(3*n+1), a(5*n+1) = (A099371(3*n+2)-A099371(3*n+1))/2, a(5*n+2) = (A099371(3*n+2)+A099371(3*n+1))/2, a(5*n+3):= A099371(3*n+2) and a(5*n+4) = A099371(3*n+3)/2. (End)
G.f.: -(x^8-4*x^7+5*x^6-9*x^5+41*x^4+9*x^3+5*x^2+4*x+1) / (x^10+756*x^5-1). - Colin Barker, Nov 11 2013
a(n) = 756*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 12 2013