cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A099371 Expansion of g.f.: x/(1 - 9*x - x^2).

Original entry on oeis.org

0, 1, 9, 82, 747, 6805, 61992, 564733, 5144589, 46866034, 426938895, 3889316089, 35430783696, 322766369353, 2940328107873, 26785719340210, 244011802169763, 2222891938868077, 20250039251982456, 184473245206710181, 1680509246112374085, 15309056460218076946
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

For more information about this type of recurrence follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 9's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
For n >= 1, a(n) equals the number of words of length n-1 on alphabet {0,1,...,9} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Mar 10 2023: (Start)
Also called the 9-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 9 kinds of squares available. (End)

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 9*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
  • Maple
    F:= gfun:-rectoproc({a(n)=9*a(n-1)+a(n-2),a(0)=0,a(1)=1},a(n),remember):
    seq(F(n),n=0..30); # Robert Israel, Feb 01 2015
  • Mathematica
    CoefficientList[Series[x/(1-9*x-x^2), {x,0,30}], x] (* G. C. Greubel, Apr 16 2017 *)
    LinearRecurrence[{9,1}, {0,1}, 30] (* G. C. Greubel, Jan 24 2018 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(1/(1-9*x-x^2)) ) \\ Charles R Greathouse IV, Feb 03 2014
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen3
    it = recur_gen3(0,1,9,9,1,0)
    [next(it) for i in range(1,22)] # Zerinvary Lajos, Jul 09 2008
    
  • Sage
    [lucas_number1(n,9,-1) for n in range(0, 20)] # Zerinvary Lajos, Apr 26 2009
    

Formula

G.f.: x/(1 - 9*x - x^2).
a(n) = 9*a(n-1) + a(n-2), n >= 2, a(0)=0, a(1)=1.
a(n) = (-i)^(n-1)*S(n-1, 9*i) with S(n, x) Chebyshev's polynomials of the second kind (see A049310) and i^2=-1.
a(n) = (ap^n - am^p)/(ap-am) with ap:= (9+sqrt(85))/2 and am:= (9-sqrt(85))/2 = -1/ap (Binet form).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1-k, k)*9^(n-1-2*k) n >= 1.
a(n) = F(n, 9), the n-th Fibonacci polynomial evaluated at x=9. - T. D. Noe, Jan 19 2006
a(n) = ((9+sqrt(85))^n - (9-sqrt(85))^n)/(2^n*sqrt(85)). Offset 1. a(3)=82. - Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009
a(p) == 85^((p-1)/2) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009 [See A087475 for more info about this congruence. - Jason Yuen, Apr 05 2025]
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+2) = 9*A097839(n), a(2n+1) = A097841(n).
a(3n+1) = A041151(5n), a(3n+2) = A041151(5n+3), a(3n+3) = 2*A041151(5n+4).
Limit_{k -> infinity} (a(n+k)/a(k)) = (A087798(n) + A099371(n)*sqrt(85))/2.
Lim_{n->infinity} A087798(n)/A099371(n) = sqrt(85). (End)
a(n) ~ 1/sqrt(85)*((9+sqrt(85))/2)^n. - Jean-François Alcover, Dec 04 2013
a(n) = [1,0] (M^n) [0,1]^T where M is the matrix [9,1; 1,0]. - Robert Israel, Feb 01 2015
E.g.f.: 2*exp(9*x/2)*sinh(sqrt(85)*x/2)/sqrt(85). - Stefano Spezia, Apr 06 2023

A041019 Denominators of continued fraction convergents to sqrt(13).

Original entry on oeis.org

1, 1, 2, 3, 5, 33, 38, 71, 109, 180, 1189, 1369, 2558, 3927, 6485, 42837, 49322, 92159, 141481, 233640, 1543321, 1776961, 3320282, 5097243, 8417525, 55602393, 64019918, 119622311, 183642229, 303264540, 2003229469, 2306494009, 4309723478, 6616217487, 10925940965
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010122 (continued fraction for sqrt(13)), A041018 (numerators).

Programs

  • Magma
    I:=[1, 1, 2, 3, 5, 33, 38, 71, 109, 180]; [n le 10 select I[n] else 36*Self(n-5)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[13], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    CoefficientList[Series[((1 - 2 x + 4 x^2 - 3 x^3 + x^4) (1 + 3 x + 4 x^2 + 2 x^3 + x^4))/(1 - 36 x^5 - x^10), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    LinearRecurrence[{0,0,0,0,36,0,0,0,0,1},{1,1,2,3,5,33,38,71,109,180},40] (* Harvey P. Dale, Sep 30 2016 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A006190(3*n+1),
a(5*n+1) = (A006190(3*n+2) - A006190(3*n+1))/2,
a(5*n+2) = (A006190(3*n+2) + A006190(3*n+1))/2,
a(5*n+3) = A006190(3*n+2) and a(5*n+4) = A006190(3*n+3)/2. (End)
G.f.: ((1 - 2*x + 4*x^2 - 3*x^3 + x^4)*(1 + 3*x + 4*x^2 + 2*x^3 + x^4))/(1 - 36*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = A010122(n)*a(n-1) + a(n-2), a(0)=1, a(-1)=0. - Paul Weisenhorn, Aug 17 2018

Extensions

More terms from Vincenzo Librandi, Dec 10 2013

A041047 Denominators of continued fraction convergents to sqrt(29).

Original entry on oeis.org

1, 2, 3, 5, 13, 135, 283, 418, 701, 1820, 18901, 39622, 58523, 98145, 254813, 2646275, 5547363, 8193638, 13741001, 35675640, 370497401, 776670442, 1147167843, 1923838285, 4994844413, 51872282415
Offset: 0

Views

Author

Keywords

Comments

The terms of this sequence can be constructed with the terms of sequence A052918.
For the terms of the periodical sequence of the continued fraction for sqrt(29) see A010128. We observe that its period is five. The decimal expansion of sqrt(29) is A010484. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[1, 2, 3, 5, 13, 135, 283, 418, 701, 1820]; [n le 10 select I[n] else 140*Self(n-5)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[29],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011 *)
    Denominator[Convergents[Sqrt[29], 30]] (* Vincenzo Librandi, Dec 10 2013 *)

Formula

a(5*n) = A052918(3*n), a(5*n+1) = (A052918(3*n+1) - A052918(3*n))/2, a(5*n+2) = (A052918(3*n+1) + A052918(3*n))/2, a(5*n+3) = A052918(3*n+1) and a(5*n+4) = A052918(3*n+2)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: (1 + 2*x + 3*x^2 + 5*x^3 + 13*x^4 - 5*x^5 + 3*x^6 - 2*x^7 + x^8)/(1 - 140*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = 140*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 10 2013

A041091 Denominators of continued fraction convergents to sqrt(53).

Original entry on oeis.org

1, 3, 4, 7, 25, 357, 1096, 1453, 2549, 9100, 129949, 398947, 528896, 927843, 3312425, 47301793, 145217804, 192519597, 337737401, 1205731800, 17217982601, 52859679603, 70077662204, 122937341807, 438889687625, 6267392968557, 19241068593296, 25508461561853
Offset: 0

Views

Author

Keywords

Comments

The terms of this sequence can be constructed with the terms of sequence A054413. For the terms of the periodic sequence of the continued fraction for sqrt(53) see A010139. We observe that its period is five. The decimal expansion of sqrt(53) is A010506. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Maple
    convert(sqrt(53), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 17 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[53], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[53], 30]] (* Vincenzo Librandi, Oct 24 2013 *)
    LinearRecurrence[{0,0,0,0,364,0,0,0,0,1},{1,3,4,7,25,357,1096,1453,2549,9100},30] (* Harvey P. Dale, Nov 13 2019 *)

Formula

a(5*n) = A054413(3*n), a(5*n+1) = (A054413(3*n+1) - A054413(3*n))/2, a(5*n+2)= (A054413(3*n+1) + A054413(3*n))/2, a(5*n+3) = A054413(3*n+1) and a(5*n+4) = A054413(3*n+2)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8-3*x^7+4*x^6-7*x^5+25*x^4+7*x^3+4*x^2+3*x+1) / (x^10+364*x^5-1). - Colin Barker, Sep 26 2013

A041150 Numerators of continued fraction convergents to sqrt(85).

Original entry on oeis.org

9, 37, 46, 83, 378, 6887, 27926, 34813, 62739, 285769, 5206581, 21112093, 26318674, 47430767, 216041742, 3936182123, 15960770234, 19896952357, 35857722591, 163327842721, 2975758891569, 12066363408997
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 17 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A087798.
For the terms of the periodic sequence of the continued fraction for sqrt(85) see A010158. We observe that its period is five. The decimal expansion of sqrt(85) is A010536. (End)

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[85], 30]] (* Vincenzo Librandi, Oct 29 2013 *)

Formula

From Johannes W. Meijer, Jun 17 2010: (Start)
a(5*n) = A087798(3*n+1), a(5*n+1) = (A087798(3*n+2) - A087798(3*n+1))/2, a(5*n+2) = (A087798(3*n+2) + A087798(3*n+1))/2, a(5*n+3) = A087798(3*n+2) and a(5*n+4) = A087798(3*n+3)/2. (End)
G.f.: -(x^9-9*x^8+37*x^7-46*x^6+83*x^5+378*x^4+83*x^3+46*x^2+37*x+9) / (x^10+756*x^5-1). - Colin Barker, Nov 04 2013

A041227 Denominators of continued fraction convergents to sqrt(125).

Original entry on oeis.org

1, 5, 6, 11, 61, 1353, 6826, 8179, 15005, 83204, 1845493, 9310669, 11156162, 20466831, 113490317, 2517253805, 12699759342, 15217013147, 27916772489, 154800875592, 3433536035513, 17322481053157, 20756017088670, 38078498141827, 211148507797805
Offset: 0

Views

Author

Keywords

Comments

The a(n) terms of this sequence can be constructed with the terms of sequence A049666. For the terms of the periodical sequence of the continued fraction for sqrt(125) see A010186. We observe that its period is five. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[1, 5, 6, 11, 61, 1353, 6826, 8179, 15005, 83204]; [n le 10 select I[n] else 1364*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 13 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[125], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[125], 30]]  (* Vincenzo Librandi, Dec 13 2013 *)
    LinearRecurrence[{0,0,0,0,1364,0,0,0,0,1},{1,5,6,11,61,1353,6826,8179,15005,83204},30] (* Harvey P. Dale, Apr 29 2022 *)

Formula

a(5*n) = A049666(3*n+1), a(5*n+1) = (A049666(3*n+2) - A049666(3*n+1))/2, a(5*n+2) = (A049666(3*n+2)+A049666(3*n+1))/2, a(5*n+3):= A049666(3*n+2) and a(5*n+4) = A049666(3*n+3)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8 -5*x^7 +6*x^6 -11*x^5 +61*x^4 +11*x^3 +6*x^2 +5*x +1) / ((x^2 +4*x -1)*(x^4 -7*x^3 +19*x^2 -3*x +1)*(x^4 +3*x^3 +19*x^2 +7*x +1)). - Colin Barker, Nov 12 2013
a(n) = 1364*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 13 2013

A041319 Denominators of continued fraction convergents to sqrt(173).

Original entry on oeis.org

1, 6, 7, 13, 85, 2223, 13423, 15646, 29069, 190060, 4970629, 30013834, 34984463, 64998297, 424974245, 11114328667, 67110946247, 78225274914, 145336221161, 950242601880, 24851643870041, 150060105822126, 174911749692167, 324971855514293, 2124742882777925
Offset: 0

Views

Author

Keywords

Comments

The a(n) terms of this sequence can be constructed with the terms of sequence A140455. For the terms of the periodical sequence of the continued fraction for sqrt(173) see A010217. We observe that its period is five. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[1,6,7,13,85,2223,13423,15646,29069,190060]; [n le 10 select I[n] else 2236*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 15 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[173], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[173], 30]] (* Vincenzo Librandi, Dec 15 2013 *)
    LinearRecurrence[{0,0,0,0,2236,0,0,0,0,1},{1,6,7,13,85,2223,13423,15646,29069,190060},30] (* Harvey P. Dale, Sep 19 2020 *)

Formula

a(5*n) = A140455(3*n+1), a(5*n+1) = (A140455(3*n+2) - A140455(3*n+1))/2, a(5*n+2) = (A140455(3*n+2)+A140455(3*n+1))/2, a(5*n+3) = A140455(3*n+2) and a(5*n+4) = A140455(3*n+3)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8-6*x^7+7*x^6-13*x^5+85*x^4+13*x^3+7*x^2+6*x+1) / (x^10+2236*x^5-1). - Colin Barker, Nov 12 2013
a(n) = 2236*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 15 2013

A041427 Denominators of continued fraction convergents to sqrt(229).

Original entry on oeis.org

1, 7, 8, 15, 113, 3405, 23948, 27353, 51301, 386460, 11645101, 81902167, 93547268, 175449435, 1321693313, 39826248825, 280105435088, 319931683913, 600037119001, 4520191516920, 136205782626601, 957960669903127, 1094166452529728, 2052127122432855
Offset: 0

Views

Author

Keywords

Comments

The a(n) terms of this sequence can be constructed with the terms of sequence A154597. For the terms of the periodical sequence of the continued fraction for sqrt(229) see A040213. We observe that its period is five. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[1,7,8,15,113,3405,23948,27353,51301,386460]; [n le 10 select I[n] else 3420*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 17 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[229], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[229], 30]] (* Vincenzo Librandi, Dec 17 2013 *)
    LinearRecurrence[{0,0,0,0,3420,0,0,0,0,1},{1,7,8,15,113,3405,23948,27353,51301,386460},30] (* Harvey P. Dale, Oct 14 2020 *)

Formula

a(5*n) = A154597(3*n+1), a(5*n+1) = (A154597(3*n+2) - A154597(3*n+1))/2, a(5*n+2) = (A154597(3*n+2) + A154597(3*n+1))/2, a(5*n+3) = A154597(3*n+2) and a(5*n+4) = A154597(3*n+3)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8 -7*x^7 +8*x^6 -15*x^5 +113*x^4 +15*x^3 +8*x^2 +7*x +1) / (x^10 +3420*x^5 -1). - Colin Barker, Nov 12 2013
a(n) = 3420*a(n-5) + a(n-10) for n>9. - Vincenzo Librandi, Dec 17 2013

A041551 Denominators of continued fraction convergents to sqrt(293).

Original entry on oeis.org

1, 8, 9, 17, 145, 4947, 39721, 44668, 84389, 719780, 24556909, 197175052, 221731961, 418907013, 3572988065, 121900501223, 978776997849, 1100677499072, 2079454496921, 17736313474440, 605114112627881, 4858649214497488, 5463763327125369, 10322412541622857
Offset: 0

Views

Author

Keywords

Comments

The a(n) terms of this sequence can be constructed with the terms of sequence A178765. For the terms of the periodical sequence of the continued fraction for sqrt(293) see A040275. We observe that its period is five. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[1,8,9,17,145,4947,39721,44668,84389,719780]; [n le 10 select I[n] else 4964*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 20 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[293], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[293 ], 30]] (* Vincenzo Librandi, Dec 20 2013 *)

Formula

a(5n) = A178765(3n), a(5n+1) = (A178765(3n+1) - A178765(3n))/2, a(5n+2) = (A178765(3n+1) + A178765(3n))/2, a(5n+3) = A178765(3n+1) and a(5n+4) = A178765(3n+2)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8-8*x^7+9*x^6-17*x^5+145*x^4+17*x^3+9*x^2+8*x+1) / (x^10+4964*x^5-1). - Colin Barker, Nov 12 2013
a(n) = 4964*a(n-5) + a(n-10) for n>9. - Vincenzo Librandi, Dec 20 2013
Showing 1-9 of 9 results.