A099371 Expansion of g.f.: x/(1 - 9*x - x^2).
0, 1, 9, 82, 747, 6805, 61992, 564733, 5144589, 46866034, 426938895, 3889316089, 35430783696, 322766369353, 2940328107873, 26785719340210, 244011802169763, 2222891938868077, 20250039251982456, 184473245206710181, 1680509246112374085, 15309056460218076946
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- J. H. Han and M. D. Hirschhorn, Another Look at an Amazing Identity of Ramanujan, Mathematics Magazine, Vol. 79 (2006), pp. 302-304. See equation 6 on page 303.
- Tanya Khovanova, Recursive Sequences
- Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (9,1).
Crossrefs
Programs
-
Magma
I:=[0,1]; [n le 2 select I[n] else 9*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
-
Maple
F:= gfun:-rectoproc({a(n)=9*a(n-1)+a(n-2),a(0)=0,a(1)=1},a(n),remember): seq(F(n),n=0..30); # Robert Israel, Feb 01 2015
-
Mathematica
CoefficientList[Series[x/(1-9*x-x^2), {x,0,30}], x] (* G. C. Greubel, Apr 16 2017 *) LinearRecurrence[{9,1}, {0,1}, 30] (* G. C. Greubel, Jan 24 2018 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(1/(1-9*x-x^2)) ) \\ Charles R Greathouse IV, Feb 03 2014
-
Sage
from sage.combinat.sloane_functions import recur_gen3 it = recur_gen3(0,1,9,9,1,0) [next(it) for i in range(1,22)] # Zerinvary Lajos, Jul 09 2008
-
Sage
[lucas_number1(n,9,-1) for n in range(0, 20)] # Zerinvary Lajos, Apr 26 2009
Formula
G.f.: x/(1 - 9*x - x^2).
a(n) = 9*a(n-1) + a(n-2), n >= 2, a(0)=0, a(1)=1.
a(n) = (-i)^(n-1)*S(n-1, 9*i) with S(n, x) Chebyshev's polynomials of the second kind (see A049310) and i^2=-1.
a(n) = (ap^n - am^p)/(ap-am) with ap:= (9+sqrt(85))/2 and am:= (9-sqrt(85))/2 = -1/ap (Binet form).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1-k, k)*9^(n-1-2*k) n >= 1.
a(n) = F(n, 9), the n-th Fibonacci polynomial evaluated at x=9. - T. D. Noe, Jan 19 2006
a(n) = ((9+sqrt(85))^n - (9-sqrt(85))^n)/(2^n*sqrt(85)). Offset 1. a(3)=82. - Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009
a(p) == 85^((p-1)/2) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009 [See A087475 for more info about this congruence. - Jason Yuen, Apr 05 2025]
From Johannes W. Meijer, Jun 12 2010: (Start)
a(n) ~ 1/sqrt(85)*((9+sqrt(85))/2)^n. - Jean-François Alcover, Dec 04 2013
a(n) = [1,0] (M^n) [0,1]^T where M is the matrix [9,1; 1,0]. - Robert Israel, Feb 01 2015
E.g.f.: 2*exp(9*x/2)*sinh(sqrt(85)*x/2)/sqrt(85). - Stefano Spezia, Apr 06 2023
Comments