cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A087798 a(n) = 9*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 9.

Original entry on oeis.org

2, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, 432083484, 3936182123, 35857722591, 326655685442, 2975758891569, 27108485709563, 246952130277636, 2249677658208287, 20494051054152219, 186696137145578258
Offset: 0

Views

Author

Nikolay V. Kosinov, Dmitry V. Poljakov (kosinov(AT)unitron.com.ua), Oct 10 2003

Keywords

Comments

a(n+1)/a(n) converges to (9 + sqrt(85))/2.
For more information about this type of recurrence follow the Khovanova link and see A054413 and A086902. - Johannes W. Meijer, Jun 12 2010

Examples

			a(4) = 9*a(3) + a(2) = 9*756 + 83 = 6887.
		

Crossrefs

Cf. A014511.

Programs

  • Magma
    I:=[2,9]; [n le 2 select I[n] else 9*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 2, a[1] == 9, a[n] == 9 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)
    LinearRecurrence[{9,1}, {2,9}, 30] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    x='x+O('x^30); Vec((2-9*x)/(1-9*x-x^2)) \\ G. C. Greubel, Nov 07 2018

Formula

a(n) = ((9 + sqrt(85))/2)^n + ((9 - sqrt(85))/2)^n.
G.f.: (2 - 9*x)/(1 - 9*x - x^2). - Philippe Deléham, Nov 02 2008
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+1) = 9*A097840(n), a(2n) = A099373(n).
a(3n+1) = A041150(5n), a(3n+2) = A041150(5n+3), a(3n+3) = 2*A041150(5n+4).
Lim_{k->infinity} a(n+k)/a(k) = (A087798(n) + A099371(n)*sqrt(85))/2.
Lim_{n->infinity} A087798(n)/A099371(n) = sqrt(85). (End)

Extensions

More terms from Ray Chandler, Nov 06 2003

A041018 Numerators of continued fraction convergents to sqrt(13).

Original entry on oeis.org

3, 4, 7, 11, 18, 119, 137, 256, 393, 649, 4287, 4936, 9223, 14159, 23382, 154451, 177833, 332284, 510117, 842401, 5564523, 6406924, 11971447, 18378371, 30349818, 200477279, 230827097, 431304376, 662131473
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010122 (continued fraction for sqrt(13)).

Programs

  • Maple
    a[0]:=3: a[-1]:=1: b(0):=6: b(1):=1; b(2):=1: b(3):=1: b(4):=1:
    for n from 1 to 100 do  k:=n mod 5:
       a[n]:=b(k)*a[n-1]+a[n-2]:
       printf("%12d", a[n]):
    end do: # Paul Weisenhorn, Aug 17 2018
  • Mathematica
    Numerator[Convergents[Sqrt[13], 30]] (* Vincenzo Librandi, Oct 27 2013 *)
    CoefficientList[Series[(3 + 4*x + 7*x^2 + 11*x^3 + 18*x^4 + 11*x^5 - 7*x^6 + 4*x^7 - 3*x^8 + x^9)/(1 - 36*x^5 - x^10),{x,0,50}],x] (* Stefano Spezia, Aug 31 2018 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A006497(3*n+1),
a(5*n+1) = (A006497(3*n+2)-A006497(3*n+1))/2,
a(5*n+2) = (A006497(3*n+2)+A006497(3*n+1))/2,
a(5*n+3) = A006497(3*n+2),
a(5*n+4) = A006497(3*n+3)/2.
(End)
G.f.: (3 + 4*x + 7*x^2 + 11*x^3 + 18*x^4 + 11*x^5 - 7*x^6 + 4*x^7 - 3*x^8 + x^9)/(1 - 36*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = A010122(n)*a(n-1)+a(n-2) with a(0)=3, a(-1)=1. - Paul Weisenhorn, Aug 19 2018

A041046 Numerators of continued fraction convergents to sqrt(29).

Original entry on oeis.org

5, 11, 16, 27, 70, 727, 1524, 2251, 3775, 9801, 101785, 213371, 315156, 528527, 1372210, 14250627, 29873464, 44124091, 73997555, 192119201, 1995189565, 4182498331, 6177687896, 10360186227, 26898060350
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The terms of this sequence can be constructed with the terms of sequence A087130.
For the terms of the periodical sequence of the continued fraction for sqrt(29) see A010128. We observe that its period is five. The decimal expansion of sqrt(29) is A010484. (End)

Crossrefs

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[29],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011 *)
    Numerator[Convergents[Sqrt[29], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
    LinearRecurrence[ {0,0,0,0,140,0,0,0,0,1},{5,11,16,27,70,727,1524,2251,3775,9801},30] (* Harvey P. Dale, Jun 10 2021 *)

Formula

a(5*n) = A087130(3*n+1), a(5*n+1) = (A087130(3*n+2) - A087130(3*n+1))/2, a(5*n+2) = ( A087130(3*n+2) + A087130(3*n+1))/2, a(5*n+3) = A087130(3*n+2) and a(5*n+4) = A087130(3*n+3)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: (5 + 11*x + 16*x^2 + 27*x^3 + 70*x^4 + 27*x^5 - 16*x^6 + 11*x^7 - 5*x^8 + x^9)/(1 - 140*x^5 - x^10) - Peter J. C. Moses, Jul 29 2013

A041090 Numerators of continued fraction convergents to sqrt(53).

Original entry on oeis.org

7, 22, 29, 51, 182, 2599, 7979, 10578, 18557, 66249, 946043, 2904378, 3850421, 6754799, 24114818, 344362251, 1057201571, 1401563822, 2458765393, 8777860001, 125348805407, 384824276222, 510173081629, 894997357851, 3195165155182, 45627309530399
Offset: 0

Views

Author

Keywords

Comments

The terms of this sequence can be constructed with the terms of sequence A086902. For the terms of the periodical sequence of the continued fraction for sqrt(53) see A010139. We observe that its period is five. The decimal expansion of sqrt(53) is A010506. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[53],30]] (* Harvey P. Dale, Sep 24 2013 *)
    CoefficientList[Series[-(x^9 - 7 x^8 + 22 x^7 - 29 x^6 + 51 x^5 + 182 x^4 + 51 x^3 + 29 x^2 + 22 x + 7)/(x^10 + 364 x^5 - 1), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 27 2013 *)

Formula

a(5*n) = A086902(3*n+1), a(5*n+1) = (A086902(3*n+2)-A086902(3*n+1))/2, a(5*n+2) = (A086902(3*n+2)+A086902(3*n+1))/2, a(5*n+3) = A086902(3*n+2) and a(5*n+4) = A086902(3*n+3)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^9-7*x^8+22*x^7-29*x^6+51*x^5+182*x^4+51*x^3+29*x^2+22*x+7) / (x^10+364*x^5-1). - Colin Barker, Sep 26 2013

Extensions

More terms from Colin Barker, Sep 26 2013

A041151 Denominators of continued fraction convergents to sqrt(85).

Original entry on oeis.org

1, 4, 5, 9, 41, 747, 3029, 3776, 6805, 30996, 564733, 2289928, 2854661, 5144589, 23433017, 426938895, 1731188597, 2158127492, 3889316089, 17715391848, 322766369353, 1308780869260, 1631547238613, 2940328107873, 13392859670105, 244011802169763, 989440068349157
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A099371.
For the terms of the periodic sequence of the continued fraction for sqrt(85) see A010158. We observe that its period is five. The decimal expansion of sqrt(85) is A010536. (End)

Crossrefs

Programs

  • Magma
    I:=[1, 4, 5, 9, 41, 747, 3029, 3776, 6805, 30996]; [n le 10 select I[n] else 756*Self(n-5)+Self(n-10): n in [1..30]]; // Vincenzo Librandi, Dec 12 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[85], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[85], 30]] (* Vincenzo Librandi, Dec 12 2013 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A099371(3*n+1), a(5*n+1) = (A099371(3*n+2)-A099371(3*n+1))/2, a(5*n+2) = (A099371(3*n+2)+A099371(3*n+1))/2, a(5*n+3):= A099371(3*n+2) and a(5*n+4) = A099371(3*n+3)/2. (End)
G.f.: -(x^8-4*x^7+5*x^6-9*x^5+41*x^4+9*x^3+5*x^2+4*x+1) / (x^10+756*x^5-1). - Colin Barker, Nov 11 2013
a(n) = 756*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 12 2013

A041226 Numerators of continued fraction convergents to sqrt(125).

Original entry on oeis.org

11, 56, 67, 123, 682, 15127, 76317, 91444, 167761, 930249, 20633239, 104096444, 124729683, 228826127, 1268860318, 28143753123, 141987625933, 170131379056, 312119004989, 1730726404001, 38388099893011, 193671225869056, 232059325762067, 425730551631123
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A001946.
For the terms of the periodical sequence of the continued fraction for sqrt(125) see A010186. We observe that its period is five. (End)

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[125], 30]] (* Vincenzo Librandi, Oct 31 2013 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5n) = A001946(3n+1),
a(5n+1) = (A001946(3n+2) - A001946(3n+1))/2,
a(5n+2) = (A001946(3n+2) + A001946(3n+1))/2,
a(5n+3) = A001946(3n+2),
a(5n+4) = A001946(3n+3)/2. (End)
G.f.: -(x^9 -11*x^8 +56*x^7 -67*x^6 +123*x^5 +682*x^4 +123*x^3 +67*x^2 +56*x +11) / ((x^2 +4*x -1)*(x^4 -7*x^3 +19*x^2 -3*x +1)*(x^4 +3*x^3 +19*x^2 +7*x +1)). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013

A041318 Numerators of continued fraction convergents to sqrt(173).

Original entry on oeis.org

13, 79, 92, 171, 1118, 29239, 176552, 205791, 382343, 2499849, 65378417, 394770351, 460148768, 854919119, 5589663482, 146186169651, 882706681388, 1028892851039, 1911599532427, 12498490045601, 326872340718053, 1973732534353919, 2300604875071972
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010217 (continued fraction).

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[173], 30]] (* Vincenzo Librandi, Nov 01 2013 *)
    LinearRecurrence[{0,0,0,0,2236,0,0,0,0,1},{13,79,92,171,1118,29239,176552,205791,382343,2499849},30] (* Harvey P. Dale, Jul 28 2018 *)

Formula

a(5*n) = A088316(3*n+1), a(5*n+1) = (A088316(3*n+2) - A088316(3*n+1))/2, a(5*n+2) = (A088316(3*n+2)+A088316(3*n+1))/2, a(5*n+3) = A088316(3*n+2) and a(5*n+4) = A088316(3*n+3)/2. [Johannes W. Meijer, Jun 12 2010]
G.f.: -(x^9-13*x^8+79*x^7-92*x^6+171*x^5+1118*x^4+171*x^3+92*x^2+79*x+13) / (x^10+2236*x^5-1). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013

A041426 Numerators of continued fraction convergents to sqrt(229).

Original entry on oeis.org

15, 106, 121, 227, 1710, 51527, 362399, 413926, 776325, 5848201, 176222355, 1239404686, 1415627041, 2655031727, 20000849130, 602680505627, 4238764388519, 4841444894146, 9080209282665, 68402909872801, 2061167505466695, 14496575448139666, 16557742953606361
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A090301.
For the terms of the periodical sequence of the continued fraction for sqrt(229) see A040213. We observe that its period is five. (End)

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[229], 30]] (* Vincenzo Librandi, Nov 01 2013 *)
    LinearRecurrence[{0,0,0,0,3420,0,0,0,0,1},{15,106,121,227,1710,51527,362399,413926,776325,5848201},30] (* Harvey P. Dale, Dec 19 2016 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5n) = A090301(3n+1), a(5n+1) = (A090301(3n+2) - A090301(3n+1))/2, a(5n+2) = (A090301(3n+2) + A090301(3n+1))/2, a(5n+3) = A090301(3n+2) and a(5n+4) = A090301(3n+3)/2. (End)
G.f.: -(x^9-15*x^8+106*x^7-121*x^6+227*x^5+1710*x^4+227*x^3+121*x^2+106*x+15) / (x^10+3420*x^5-1). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013

A041550 Numerators of continued fraction convergents to sqrt(293).

Original entry on oeis.org

17, 137, 154, 291, 2482, 84679, 679914, 764593, 1444507, 12320649, 420346573, 3375093233, 3795439806, 7170533039, 61159704118, 2086600473051, 16753963488526, 18840563961577, 35594527450103, 303596783562401, 10357885168571737, 83166678132136297
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A090306.
For the terms of the periodical sequence of the continued fraction for sqrt(293) see A040275. We observe that its period is five. (End)

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[293], 30]] (* Vincenzo Librandi, Nov 04 2013 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5n) = A090306(3n+1), a(5n+1) = (A090306(3n+2) - A090306(3n+1))/2, a(5n+2) = (A090306(3n+2) + A090306(3n+1))/2, a(5n+3) = A090306(3n+2) and a(5n+4) = A090306(3n+3)/2. (End)
G.f.: -(x^9-17*x^8+137*x^7-154*x^6+291*x^5+2482*x^4+291*x^3+154*x^2+137*x+17) / (x^10+4964*x^5-1). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013
Showing 1-9 of 9 results.