cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A087130 a(n) = 5*a(n-1)+a(n-2) for n>1, a(0)=2, a(1)=5.

Original entry on oeis.org

2, 5, 27, 140, 727, 3775, 19602, 101785, 528527, 2744420, 14250627, 73997555, 384238402, 1995189565, 10360186227, 53796120700, 279340789727, 1450500069335, 7531841136402, 39109705751345, 203080369893127
Offset: 0

Views

Author

Paul Barry, Aug 16 2003

Keywords

Comments

Sequence is related to the fifth metallic mean [5;5,5,5,5,...] (see A098318).
The solution to the general recurrence b(n) = (2*k+1)*b(n-1)+b(n-2) with b(0)=2, b(1) = 2*k+1 is b(n) = ((2*k+1)+sqrt(4*k^2+4*k+5))^n+(2*k+1)-sqrt(4*k^2+4*k+5))^n)/2; b(n) = 2^(1-n)*Sum_{j=0..n} C(n, 2*j)*(4*k^2+4*k+5)^j*(2*k+1)^(n-2*j); b(n) = 2*T(n, (2*k+1)*x/2)(-1)^i with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. - Paul Barry, Nov 15 2003
Primes in this sequence include a(0) = 2; a(1) = 5; a(4) = 727; a(8) = 528527 (3) semiprimes in this sequence include a(7) = 101785; a(13) = 1995189565; a(16) = 279340789727; a(19) = 39109705751345; a(20) = 203080369893127 - Jonathan Vos Post, Feb 09 2005
a(n)^2 - 29*A052918(n-1)^2 = 4*(-1)^n, with n>0 - Gary W. Adamson, Oct 07 2008
For more information about this type of recurrence follow the Khovanova link and see A054413 and A086902. - Johannes W. Meijer, Jun 12 2010
Binomial transform of A072263. - Johannes W. Meijer, Aug 01 2010

Crossrefs

Programs

  • Magma
    I:=[2,5]; [n le 2 select I[n] else 5*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016
  • Mathematica
    RecurrenceTable[{a[0] == 2, a[1] == 5, a[n] == 5 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)
  • PARI
    {a(n) = if( n<0, (-1)^n * a(-n), polsym(x^2 - 5*x -1, n) [n + 1])} /* Michael Somos, Nov 04 2008 */
    
  • Sage
    [lucas_number2(n,5,-1) for n in range(0, 21)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = ((5+sqrt(29))/2)^n+((5-sqrt(29))/2)^n.
a(n) = A100236(n) + 1.
E.g.f. : 2*exp(5*x/2)*cosh(sqrt(29)*x/2); a(n) = 2^(1-n)*Sum_{k=0..floor(n/2)} C(n, 2k)*29^k*5^(n-2*k). a(n) = 2T(n, 5i/2)(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. - Paul Barry, Nov 15 2003
O.g.f.: (-2+5*x)/(-1+5*x+x^2). - R. J. Mathar, Dec 02 2007
a(-n) = (-1)^n * a(n). - Michael Somos, Nov 01 2008
A090248(n) = a(2*n). 5 * A097834(n) = a(2*n + 1). - Michael Somos, Nov 01 2008
Limit(a(n+k)/a(k), k=infinity) = (A087130(n) + A052918(n-1)*sqrt(29))/2. Limit(A087130(n)/A052918(n-1), n= infinity) = sqrt(29). - Johannes W. Meijer, Jun 12 2010
a(3n+1) = A041046(5n), a(3n+2) = A041046(5n+3) and a(3n+3) = 2*A041046 (5n+4). - Johannes W. Meijer, Jun 12 2010
a(n) = 2*A052918(n) - 5*A052918(n-1). - R. J. Mathar, Oct 02 2020
From Peter Bala, Jul 09 2025 : (Start)
The following series telescope (Cf. A000032):
For k >= 1, Sum_{n >= 1} (-1)^((k+1)*(n+1)) * a(2*n*k)/(a((2*n-1)*k)*a((2*n+1)*k)) = 1/a(k)^2.
For positive even k, Sum_{n >= 1} 1/(a(k*n) - (a(k) + 2)/a(k*n)) = 1/(a(k) - 2) and
Sum_{n >= 1} (-1)^(n+1)/(a(k*n) + (a(k) - 2)/a(k*n)) = 1/(a(k) + 2).
For positive odd k, Sum_{n >= 1} 1/(a(k*n) - (-1)^n*(a(2*k) + 2)/a(k*n)) = (a(k) + 2)/(2*(a(2*k) - 2)) and
Sum_{n >= 1} (-1)^(n+1)/(a(k*n) - (-1)^n*(a(2*k) + 2)/a(k*n)) = (a(k) - 2)/(2*(a(2*k) - 2)). (End)

A041018 Numerators of continued fraction convergents to sqrt(13).

Original entry on oeis.org

3, 4, 7, 11, 18, 119, 137, 256, 393, 649, 4287, 4936, 9223, 14159, 23382, 154451, 177833, 332284, 510117, 842401, 5564523, 6406924, 11971447, 18378371, 30349818, 200477279, 230827097, 431304376, 662131473
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010122 (continued fraction for sqrt(13)).

Programs

  • Maple
    a[0]:=3: a[-1]:=1: b(0):=6: b(1):=1; b(2):=1: b(3):=1: b(4):=1:
    for n from 1 to 100 do  k:=n mod 5:
       a[n]:=b(k)*a[n-1]+a[n-2]:
       printf("%12d", a[n]):
    end do: # Paul Weisenhorn, Aug 17 2018
  • Mathematica
    Numerator[Convergents[Sqrt[13], 30]] (* Vincenzo Librandi, Oct 27 2013 *)
    CoefficientList[Series[(3 + 4*x + 7*x^2 + 11*x^3 + 18*x^4 + 11*x^5 - 7*x^6 + 4*x^7 - 3*x^8 + x^9)/(1 - 36*x^5 - x^10),{x,0,50}],x] (* Stefano Spezia, Aug 31 2018 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A006497(3*n+1),
a(5*n+1) = (A006497(3*n+2)-A006497(3*n+1))/2,
a(5*n+2) = (A006497(3*n+2)+A006497(3*n+1))/2,
a(5*n+3) = A006497(3*n+2),
a(5*n+4) = A006497(3*n+3)/2.
(End)
G.f.: (3 + 4*x + 7*x^2 + 11*x^3 + 18*x^4 + 11*x^5 - 7*x^6 + 4*x^7 - 3*x^8 + x^9)/(1 - 36*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = A010122(n)*a(n-1)+a(n-2) with a(0)=3, a(-1)=1. - Paul Weisenhorn, Aug 19 2018

A041047 Denominators of continued fraction convergents to sqrt(29).

Original entry on oeis.org

1, 2, 3, 5, 13, 135, 283, 418, 701, 1820, 18901, 39622, 58523, 98145, 254813, 2646275, 5547363, 8193638, 13741001, 35675640, 370497401, 776670442, 1147167843, 1923838285, 4994844413, 51872282415
Offset: 0

Views

Author

Keywords

Comments

The terms of this sequence can be constructed with the terms of sequence A052918.
For the terms of the periodical sequence of the continued fraction for sqrt(29) see A010128. We observe that its period is five. The decimal expansion of sqrt(29) is A010484. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[1, 2, 3, 5, 13, 135, 283, 418, 701, 1820]; [n le 10 select I[n] else 140*Self(n-5)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[29],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011 *)
    Denominator[Convergents[Sqrt[29], 30]] (* Vincenzo Librandi, Dec 10 2013 *)

Formula

a(5*n) = A052918(3*n), a(5*n+1) = (A052918(3*n+1) - A052918(3*n))/2, a(5*n+2) = (A052918(3*n+1) + A052918(3*n))/2, a(5*n+3) = A052918(3*n+1) and a(5*n+4) = A052918(3*n+2)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: (1 + 2*x + 3*x^2 + 5*x^3 + 13*x^4 - 5*x^5 + 3*x^6 - 2*x^7 + x^8)/(1 - 140*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = 140*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 10 2013

A041090 Numerators of continued fraction convergents to sqrt(53).

Original entry on oeis.org

7, 22, 29, 51, 182, 2599, 7979, 10578, 18557, 66249, 946043, 2904378, 3850421, 6754799, 24114818, 344362251, 1057201571, 1401563822, 2458765393, 8777860001, 125348805407, 384824276222, 510173081629, 894997357851, 3195165155182, 45627309530399
Offset: 0

Views

Author

Keywords

Comments

The terms of this sequence can be constructed with the terms of sequence A086902. For the terms of the periodical sequence of the continued fraction for sqrt(53) see A010139. We observe that its period is five. The decimal expansion of sqrt(53) is A010506. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[53],30]] (* Harvey P. Dale, Sep 24 2013 *)
    CoefficientList[Series[-(x^9 - 7 x^8 + 22 x^7 - 29 x^6 + 51 x^5 + 182 x^4 + 51 x^3 + 29 x^2 + 22 x + 7)/(x^10 + 364 x^5 - 1), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 27 2013 *)

Formula

a(5*n) = A086902(3*n+1), a(5*n+1) = (A086902(3*n+2)-A086902(3*n+1))/2, a(5*n+2) = (A086902(3*n+2)+A086902(3*n+1))/2, a(5*n+3) = A086902(3*n+2) and a(5*n+4) = A086902(3*n+3)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^9-7*x^8+22*x^7-29*x^6+51*x^5+182*x^4+51*x^3+29*x^2+22*x+7) / (x^10+364*x^5-1). - Colin Barker, Sep 26 2013

Extensions

More terms from Colin Barker, Sep 26 2013

A041150 Numerators of continued fraction convergents to sqrt(85).

Original entry on oeis.org

9, 37, 46, 83, 378, 6887, 27926, 34813, 62739, 285769, 5206581, 21112093, 26318674, 47430767, 216041742, 3936182123, 15960770234, 19896952357, 35857722591, 163327842721, 2975758891569, 12066363408997
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 17 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A087798.
For the terms of the periodic sequence of the continued fraction for sqrt(85) see A010158. We observe that its period is five. The decimal expansion of sqrt(85) is A010536. (End)

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[85], 30]] (* Vincenzo Librandi, Oct 29 2013 *)

Formula

From Johannes W. Meijer, Jun 17 2010: (Start)
a(5*n) = A087798(3*n+1), a(5*n+1) = (A087798(3*n+2) - A087798(3*n+1))/2, a(5*n+2) = (A087798(3*n+2) + A087798(3*n+1))/2, a(5*n+3) = A087798(3*n+2) and a(5*n+4) = A087798(3*n+3)/2. (End)
G.f.: -(x^9-9*x^8+37*x^7-46*x^6+83*x^5+378*x^4+83*x^3+46*x^2+37*x+9) / (x^10+756*x^5-1). - Colin Barker, Nov 04 2013

A041226 Numerators of continued fraction convergents to sqrt(125).

Original entry on oeis.org

11, 56, 67, 123, 682, 15127, 76317, 91444, 167761, 930249, 20633239, 104096444, 124729683, 228826127, 1268860318, 28143753123, 141987625933, 170131379056, 312119004989, 1730726404001, 38388099893011, 193671225869056, 232059325762067, 425730551631123
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A001946.
For the terms of the periodical sequence of the continued fraction for sqrt(125) see A010186. We observe that its period is five. (End)

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[125], 30]] (* Vincenzo Librandi, Oct 31 2013 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5n) = A001946(3n+1),
a(5n+1) = (A001946(3n+2) - A001946(3n+1))/2,
a(5n+2) = (A001946(3n+2) + A001946(3n+1))/2,
a(5n+3) = A001946(3n+2),
a(5n+4) = A001946(3n+3)/2. (End)
G.f.: -(x^9 -11*x^8 +56*x^7 -67*x^6 +123*x^5 +682*x^4 +123*x^3 +67*x^2 +56*x +11) / ((x^2 +4*x -1)*(x^4 -7*x^3 +19*x^2 -3*x +1)*(x^4 +3*x^3 +19*x^2 +7*x +1)). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013

A041318 Numerators of continued fraction convergents to sqrt(173).

Original entry on oeis.org

13, 79, 92, 171, 1118, 29239, 176552, 205791, 382343, 2499849, 65378417, 394770351, 460148768, 854919119, 5589663482, 146186169651, 882706681388, 1028892851039, 1911599532427, 12498490045601, 326872340718053, 1973732534353919, 2300604875071972
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010217 (continued fraction).

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[173], 30]] (* Vincenzo Librandi, Nov 01 2013 *)
    LinearRecurrence[{0,0,0,0,2236,0,0,0,0,1},{13,79,92,171,1118,29239,176552,205791,382343,2499849},30] (* Harvey P. Dale, Jul 28 2018 *)

Formula

a(5*n) = A088316(3*n+1), a(5*n+1) = (A088316(3*n+2) - A088316(3*n+1))/2, a(5*n+2) = (A088316(3*n+2)+A088316(3*n+1))/2, a(5*n+3) = A088316(3*n+2) and a(5*n+4) = A088316(3*n+3)/2. [Johannes W. Meijer, Jun 12 2010]
G.f.: -(x^9-13*x^8+79*x^7-92*x^6+171*x^5+1118*x^4+171*x^3+92*x^2+79*x+13) / (x^10+2236*x^5-1). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013

A041426 Numerators of continued fraction convergents to sqrt(229).

Original entry on oeis.org

15, 106, 121, 227, 1710, 51527, 362399, 413926, 776325, 5848201, 176222355, 1239404686, 1415627041, 2655031727, 20000849130, 602680505627, 4238764388519, 4841444894146, 9080209282665, 68402909872801, 2061167505466695, 14496575448139666, 16557742953606361
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A090301.
For the terms of the periodical sequence of the continued fraction for sqrt(229) see A040213. We observe that its period is five. (End)

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[229], 30]] (* Vincenzo Librandi, Nov 01 2013 *)
    LinearRecurrence[{0,0,0,0,3420,0,0,0,0,1},{15,106,121,227,1710,51527,362399,413926,776325,5848201},30] (* Harvey P. Dale, Dec 19 2016 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5n) = A090301(3n+1), a(5n+1) = (A090301(3n+2) - A090301(3n+1))/2, a(5n+2) = (A090301(3n+2) + A090301(3n+1))/2, a(5n+3) = A090301(3n+2) and a(5n+4) = A090301(3n+3)/2. (End)
G.f.: -(x^9-15*x^8+106*x^7-121*x^6+227*x^5+1710*x^4+227*x^3+121*x^2+106*x+15) / (x^10+3420*x^5-1). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013

A041550 Numerators of continued fraction convergents to sqrt(293).

Original entry on oeis.org

17, 137, 154, 291, 2482, 84679, 679914, 764593, 1444507, 12320649, 420346573, 3375093233, 3795439806, 7170533039, 61159704118, 2086600473051, 16753963488526, 18840563961577, 35594527450103, 303596783562401, 10357885168571737, 83166678132136297
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A090306.
For the terms of the periodical sequence of the continued fraction for sqrt(293) see A040275. We observe that its period is five. (End)

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[293], 30]] (* Vincenzo Librandi, Nov 04 2013 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5n) = A090306(3n+1), a(5n+1) = (A090306(3n+2) - A090306(3n+1))/2, a(5n+2) = (A090306(3n+2) + A090306(3n+1))/2, a(5n+3) = A090306(3n+2) and a(5n+4) = A090306(3n+3)/2. (End)
G.f.: -(x^9-17*x^8+137*x^7-154*x^6+291*x^5+2482*x^4+291*x^3+154*x^2+137*x+17) / (x^10+4964*x^5-1). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013

A319749 a(n) is the numerator of the Heron sequence with h(0)=3.

Original entry on oeis.org

3, 11, 119, 14159, 200477279, 40191139395243839, 1615327685887921300502934267457919, 2609283532796026943395592527806764363779539144932833602430435810559
Offset: 0

Views

Author

Paul Weisenhorn, Sep 27 2018

Keywords

Comments

The denominator of the Heron sequence is in A319750.
The following relationship holds between the numerator of the Heron sequence and the numerator of the continued fraction A041018(n)/A041019(n) convergent to sqrt(13).
n even: a(n)=A041018((5*2^n-5)/3).
n odd: a(n)=A041018((5*2^n-1)/3).
More generally, all numbers c(n)=A078370(n)=(2n+1)^2+4 have the same relationship between the numerator of the Heron sequence and the numerator of the continued fraction convergent to 2n+1.
sqrt(c(n)) has the continued fraction 2n+1; n,1,1,n,4n+2.
hn(n)^2-c(n)*hd(n)^2=4 for n>1.
From Peter Bala, Mar 29 2022: (Start)
Applying Heron's method (sometimes called the Babylonian method) to approximate the square root of the function x^2 + 4, starting with a guess equal to x, produces the sequence of rational functions [x, 2*T(1,(x^2+2)/2)/x, 2*T(2,(x^2+2)/2)/( 2*x*T(1,(x^2+2)/2) ), 2*T(4,(x^2+2)/2)/( 4*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2) ), 2*T(8,(x^2+2)/2)/( 8*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2)*T(4,(x^2+2)/2) ), ...], where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. The present sequence is the case x = 3. Cf. A001566 and A058635 (case x = 1), A081459 and A081460 (essentially the case x = 4). (End)

Examples

			A078370(2)=29.
hn(0)=A041046(0)=5; hn(1)=A041046(3)=27; hn(2)=A041046(5)=727;
hn(3)=A041046(13)=528527.
		

Crossrefs

2*T(2^n,x/2) modulo differences of offset: A001566 (x = 3 and x = 7), A003010 (x = 4), A003487 (x = 5), A003423 (x = 6), A346625 (x = 8), A135927 (x = 10), A228933 (x = 18).

Programs

  • Maple
    hn[0]:=3:  hd[0]:=1:
    for n from 1 to 6 do
    hn[n]:=(hn[n-1]^2+13*hd[n-1]^2)/2:
    hd[n]:=hn[n-1]*hd[n-1]:
       printf("%5d%40d%40d\n", n, hn[n], hd[n]):
    end do:
    #alternative program
    a := n -> if n = 0 then 3 else simplify( 2*ChebyshevT(2^(n-1), 11/2) ) end if:
    seq(a(n), n = 0..7); # Peter Bala, Mar 16 2022
  • Python
    def aupton(nn):
        hn, hd, alst = 3, 1, [3]
        for n in range(nn):
            hn, hd = (hn**2 + 13*hd**2)//2, hn*hd
            alst.append(hn)
        return alst
    print(aupton(7)) # Michael S. Branicky, Mar 16 2022

Formula

h(n) = hn(n)/hd(n); hn(0)=3; hd(0)=1.
hn(n+1) = (hn(n)^2+13*hd(n)^2)/2.
hd(n+1) = hn(n)*hd(n).
A041018(n) = A010122(n)*A041018(n-1) + A041018(n-2).
A041019(n) = A010122(n)*A041019(n-1) + A041019(n-2).
From Peter Bala, Mar 16 2022: (Start)
a(n) = 2*T(2^(n-1),11/2) for n >= 1, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = 2*T(2^n, 3*sqrt(-1)/2) for n >= 2.
a(n) = ((11 + 3*sqrt(13))/2)^(2^(n-1)) + ((11 - 3*sqrt(13))/2)^(2^(n-1)) for n >= 1.
a(n+1) = a(n)^2 - 2 for n >= 1.
a(n) = A057076(2^(n-1)) for n >= 1.
Engel expansion of (1/6)*(13 - 3*sqrt(13)); that is, (1/6)*(13 - 3*sqrt(13)) = 1/3 + 1/(3*11) + 1/(3*11*119) + .... (Define L(n) = (1/2)*(n - sqrt(n^2 - 4)) for n >= 2 and show L(n) = 1/n + L(n^2-2)/n. Iterate this relation with n = 11. See also Liardet and Stambul, Section 4.)
sqrt(13) = 6*Product_{n >= 0} (1 - 1/a(n)).
sqrt(13) = (9/5)*Product_{n >= 0} (1 + 2/a(n)). See A001566. (End)

Extensions

a(6) and a(7) added by Peter Bala, Mar 16 2022
Showing 1-10 of 10 results.