cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A041019 Denominators of continued fraction convergents to sqrt(13).

Original entry on oeis.org

1, 1, 2, 3, 5, 33, 38, 71, 109, 180, 1189, 1369, 2558, 3927, 6485, 42837, 49322, 92159, 141481, 233640, 1543321, 1776961, 3320282, 5097243, 8417525, 55602393, 64019918, 119622311, 183642229, 303264540, 2003229469, 2306494009, 4309723478, 6616217487, 10925940965
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010122 (continued fraction for sqrt(13)), A041018 (numerators).

Programs

  • Magma
    I:=[1, 1, 2, 3, 5, 33, 38, 71, 109, 180]; [n le 10 select I[n] else 36*Self(n-5)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[13], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    CoefficientList[Series[((1 - 2 x + 4 x^2 - 3 x^3 + x^4) (1 + 3 x + 4 x^2 + 2 x^3 + x^4))/(1 - 36 x^5 - x^10), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    LinearRecurrence[{0,0,0,0,36,0,0,0,0,1},{1,1,2,3,5,33,38,71,109,180},40] (* Harvey P. Dale, Sep 30 2016 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A006190(3*n+1),
a(5*n+1) = (A006190(3*n+2) - A006190(3*n+1))/2,
a(5*n+2) = (A006190(3*n+2) + A006190(3*n+1))/2,
a(5*n+3) = A006190(3*n+2) and a(5*n+4) = A006190(3*n+3)/2. (End)
G.f.: ((1 - 2*x + 4*x^2 - 3*x^3 + x^4)*(1 + 3*x + 4*x^2 + 2*x^3 + x^4))/(1 - 36*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = A010122(n)*a(n-1) + a(n-2), a(0)=1, a(-1)=0. - Paul Weisenhorn, Aug 17 2018

Extensions

More terms from Vincenzo Librandi, Dec 10 2013

A154597 a(n) = 15*a(n-1) + a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 15, 226, 3405, 51301, 772920, 11645101, 175449435, 2643386626, 39826248825, 600037119001, 9040383033840, 136205782626601, 2052127122432855, 30918112619119426, 465823816409224245, 7018275358757483101, 105739954197771470760, 1593117588325329544501
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009

Keywords

Comments

Limit_{n -> infinity} a(n)/a(n-1) = (15 + sqrt(229))/2. - Klaus Brockhaus, Oct 07 2009
For more information about this type of recurrence follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 15's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n - 1 on alphabet {0,1,...,15} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Apr 30 2023: (Start)
Also called the 15-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 15 kinds of squares available. (End)

Crossrefs

Row n=15 of A073133, A172236 and A352361 and column k=15 of A157103.
First bisection is A098247.
Cf. A166125 (decimal expansion of sqrt(229)), A166126 (decimal expansion of (15 + sqrt(229))/2).
Cf. also A041427, A090301, A098245.
Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), A000129 (k=2), A006190 (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), this sequence (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), A243399 (k=19), A041181 (k=20).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-229); S:=[ ((15+r)^n-(15-r)^n)/(2^n*r): n in [1..17] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
    
  • Magma
    [n le 2 select n-1 else 15*Self(n-1) +Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 20 2024
    
  • Mathematica
    LinearRecurrence[{15,1}, {0,1}, 31] (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *)
    CoefficientList[Series[x/(1-15*x-x^2), {x,0,50}], x] (* G. C. Greubel, Apr 16 2017 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x/(1-15*x-x^2))) \\ G. C. Greubel, Apr 16 2017
    
  • SageMath
    def A154597(n): return (-i)^(n-1)*chebyshev_U(n-1, 15*i/2)
    [A154597(n) for n in range(31)] # G. C. Greubel, Sep 20 2024

Formula

G.f.: x/(1 - 15*x - x^2). - Klaus Brockhaus, Jan 12 2009, corrected Oct 07 2009
a(n) = ((15 + sqrt(229))^n - (15 - sqrt(229))^n)/(2^n*sqrt(229)).
From Johannes W. Meijer, Jun 12 2010: (Start)
Limit_{k -> infinity} a(n+k)/a(k) = (A090301(n) + a(n)*sqrt(229))/2.
Limit_{n -> infinity} A090301(n)/a(n) = sqrt(229).
a(2n+1) = 15*A098245(n-1).
a(3n+1) = A041427(5n), a(3n+2) = A041427(5n+3), a(3n+3) = 2*A041427(5n+4). (End)
E.g.f.: (2/sqrt(229))*exp(15*x/2)*sinh(sqrt(229)*x/2). - G. C. Greubel, Sep 20 2024

Extensions

Extended beyond a(7) by Klaus Brockhaus and Philippe Deléham, Jan 12 2009
Name from Philippe Deléham, Jan 12 2009
Edited by Klaus Brockhaus, Oct 07 2009
Missing a(0) added by Jianing Song, Jan 29 2019

A041047 Denominators of continued fraction convergents to sqrt(29).

Original entry on oeis.org

1, 2, 3, 5, 13, 135, 283, 418, 701, 1820, 18901, 39622, 58523, 98145, 254813, 2646275, 5547363, 8193638, 13741001, 35675640, 370497401, 776670442, 1147167843, 1923838285, 4994844413, 51872282415
Offset: 0

Views

Author

Keywords

Comments

The terms of this sequence can be constructed with the terms of sequence A052918.
For the terms of the periodical sequence of the continued fraction for sqrt(29) see A010128. We observe that its period is five. The decimal expansion of sqrt(29) is A010484. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[1, 2, 3, 5, 13, 135, 283, 418, 701, 1820]; [n le 10 select I[n] else 140*Self(n-5)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, Dec 10 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[29],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011 *)
    Denominator[Convergents[Sqrt[29], 30]] (* Vincenzo Librandi, Dec 10 2013 *)

Formula

a(5*n) = A052918(3*n), a(5*n+1) = (A052918(3*n+1) - A052918(3*n))/2, a(5*n+2) = (A052918(3*n+1) + A052918(3*n))/2, a(5*n+3) = A052918(3*n+1) and a(5*n+4) = A052918(3*n+2)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: (1 + 2*x + 3*x^2 + 5*x^3 + 13*x^4 - 5*x^5 + 3*x^6 - 2*x^7 + x^8)/(1 - 140*x^5 - x^10). - Peter J. C. Moses, Jul 29 2013
a(n) = 140*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 10 2013

A041091 Denominators of continued fraction convergents to sqrt(53).

Original entry on oeis.org

1, 3, 4, 7, 25, 357, 1096, 1453, 2549, 9100, 129949, 398947, 528896, 927843, 3312425, 47301793, 145217804, 192519597, 337737401, 1205731800, 17217982601, 52859679603, 70077662204, 122937341807, 438889687625, 6267392968557, 19241068593296, 25508461561853
Offset: 0

Views

Author

Keywords

Comments

The terms of this sequence can be constructed with the terms of sequence A054413. For the terms of the periodic sequence of the continued fraction for sqrt(53) see A010139. We observe that its period is five. The decimal expansion of sqrt(53) is A010506. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Maple
    convert(sqrt(53), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 17 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[53], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[53], 30]] (* Vincenzo Librandi, Oct 24 2013 *)
    LinearRecurrence[{0,0,0,0,364,0,0,0,0,1},{1,3,4,7,25,357,1096,1453,2549,9100},30] (* Harvey P. Dale, Nov 13 2019 *)

Formula

a(5*n) = A054413(3*n), a(5*n+1) = (A054413(3*n+1) - A054413(3*n))/2, a(5*n+2)= (A054413(3*n+1) + A054413(3*n))/2, a(5*n+3) = A054413(3*n+1) and a(5*n+4) = A054413(3*n+2)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8-3*x^7+4*x^6-7*x^5+25*x^4+7*x^3+4*x^2+3*x+1) / (x^10+364*x^5-1). - Colin Barker, Sep 26 2013

A041151 Denominators of continued fraction convergents to sqrt(85).

Original entry on oeis.org

1, 4, 5, 9, 41, 747, 3029, 3776, 6805, 30996, 564733, 2289928, 2854661, 5144589, 23433017, 426938895, 1731188597, 2158127492, 3889316089, 17715391848, 322766369353, 1308780869260, 1631547238613, 2940328107873, 13392859670105, 244011802169763, 989440068349157
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A099371.
For the terms of the periodic sequence of the continued fraction for sqrt(85) see A010158. We observe that its period is five. The decimal expansion of sqrt(85) is A010536. (End)

Crossrefs

Programs

  • Magma
    I:=[1, 4, 5, 9, 41, 747, 3029, 3776, 6805, 30996]; [n le 10 select I[n] else 756*Self(n-5)+Self(n-10): n in [1..30]]; // Vincenzo Librandi, Dec 12 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[85], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[85], 30]] (* Vincenzo Librandi, Dec 12 2013 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5*n) = A099371(3*n+1), a(5*n+1) = (A099371(3*n+2)-A099371(3*n+1))/2, a(5*n+2) = (A099371(3*n+2)+A099371(3*n+1))/2, a(5*n+3):= A099371(3*n+2) and a(5*n+4) = A099371(3*n+3)/2. (End)
G.f.: -(x^8-4*x^7+5*x^6-9*x^5+41*x^4+9*x^3+5*x^2+4*x+1) / (x^10+756*x^5-1). - Colin Barker, Nov 11 2013
a(n) = 756*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 12 2013

A041227 Denominators of continued fraction convergents to sqrt(125).

Original entry on oeis.org

1, 5, 6, 11, 61, 1353, 6826, 8179, 15005, 83204, 1845493, 9310669, 11156162, 20466831, 113490317, 2517253805, 12699759342, 15217013147, 27916772489, 154800875592, 3433536035513, 17322481053157, 20756017088670, 38078498141827, 211148507797805
Offset: 0

Views

Author

Keywords

Comments

The a(n) terms of this sequence can be constructed with the terms of sequence A049666. For the terms of the periodical sequence of the continued fraction for sqrt(125) see A010186. We observe that its period is five. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[1, 5, 6, 11, 61, 1353, 6826, 8179, 15005, 83204]; [n le 10 select I[n] else 1364*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 13 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[125], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[125], 30]]  (* Vincenzo Librandi, Dec 13 2013 *)
    LinearRecurrence[{0,0,0,0,1364,0,0,0,0,1},{1,5,6,11,61,1353,6826,8179,15005,83204},30] (* Harvey P. Dale, Apr 29 2022 *)

Formula

a(5*n) = A049666(3*n+1), a(5*n+1) = (A049666(3*n+2) - A049666(3*n+1))/2, a(5*n+2) = (A049666(3*n+2)+A049666(3*n+1))/2, a(5*n+3):= A049666(3*n+2) and a(5*n+4) = A049666(3*n+3)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8 -5*x^7 +6*x^6 -11*x^5 +61*x^4 +11*x^3 +6*x^2 +5*x +1) / ((x^2 +4*x -1)*(x^4 -7*x^3 +19*x^2 -3*x +1)*(x^4 +3*x^3 +19*x^2 +7*x +1)). - Colin Barker, Nov 12 2013
a(n) = 1364*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 13 2013

A041319 Denominators of continued fraction convergents to sqrt(173).

Original entry on oeis.org

1, 6, 7, 13, 85, 2223, 13423, 15646, 29069, 190060, 4970629, 30013834, 34984463, 64998297, 424974245, 11114328667, 67110946247, 78225274914, 145336221161, 950242601880, 24851643870041, 150060105822126, 174911749692167, 324971855514293, 2124742882777925
Offset: 0

Views

Author

Keywords

Comments

The a(n) terms of this sequence can be constructed with the terms of sequence A140455. For the terms of the periodical sequence of the continued fraction for sqrt(173) see A010217. We observe that its period is five. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[1,6,7,13,85,2223,13423,15646,29069,190060]; [n le 10 select I[n] else 2236*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 15 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[173], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[173], 30]] (* Vincenzo Librandi, Dec 15 2013 *)
    LinearRecurrence[{0,0,0,0,2236,0,0,0,0,1},{1,6,7,13,85,2223,13423,15646,29069,190060},30] (* Harvey P. Dale, Sep 19 2020 *)

Formula

a(5*n) = A140455(3*n+1), a(5*n+1) = (A140455(3*n+2) - A140455(3*n+1))/2, a(5*n+2) = (A140455(3*n+2)+A140455(3*n+1))/2, a(5*n+3) = A140455(3*n+2) and a(5*n+4) = A140455(3*n+3)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8-6*x^7+7*x^6-13*x^5+85*x^4+13*x^3+7*x^2+6*x+1) / (x^10+2236*x^5-1). - Colin Barker, Nov 12 2013
a(n) = 2236*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 15 2013

A041426 Numerators of continued fraction convergents to sqrt(229).

Original entry on oeis.org

15, 106, 121, 227, 1710, 51527, 362399, 413926, 776325, 5848201, 176222355, 1239404686, 1415627041, 2655031727, 20000849130, 602680505627, 4238764388519, 4841444894146, 9080209282665, 68402909872801, 2061167505466695, 14496575448139666, 16557742953606361
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Jun 12 2010: (Start)
The a(n) terms of this sequence can be constructed with the terms of sequence A090301.
For the terms of the periodical sequence of the continued fraction for sqrt(229) see A040213. We observe that its period is five. (End)

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[229], 30]] (* Vincenzo Librandi, Nov 01 2013 *)
    LinearRecurrence[{0,0,0,0,3420,0,0,0,0,1},{15,106,121,227,1710,51527,362399,413926,776325,5848201},30] (* Harvey P. Dale, Dec 19 2016 *)

Formula

From Johannes W. Meijer, Jun 12 2010: (Start)
a(5n) = A090301(3n+1), a(5n+1) = (A090301(3n+2) - A090301(3n+1))/2, a(5n+2) = (A090301(3n+2) + A090301(3n+1))/2, a(5n+3) = A090301(3n+2) and a(5n+4) = A090301(3n+3)/2. (End)
G.f.: -(x^9-15*x^8+106*x^7-121*x^6+227*x^5+1710*x^4+227*x^3+121*x^2+106*x+15) / (x^10+3420*x^5-1). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013

A041551 Denominators of continued fraction convergents to sqrt(293).

Original entry on oeis.org

1, 8, 9, 17, 145, 4947, 39721, 44668, 84389, 719780, 24556909, 197175052, 221731961, 418907013, 3572988065, 121900501223, 978776997849, 1100677499072, 2079454496921, 17736313474440, 605114112627881, 4858649214497488, 5463763327125369, 10322412541622857
Offset: 0

Views

Author

Keywords

Comments

The a(n) terms of this sequence can be constructed with the terms of sequence A178765. For the terms of the periodical sequence of the continued fraction for sqrt(293) see A040275. We observe that its period is five. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[1,8,9,17,145,4947,39721,44668,84389,719780]; [n le 10 select I[n] else 4964*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 20 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[293], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[293 ], 30]] (* Vincenzo Librandi, Dec 20 2013 *)

Formula

a(5n) = A178765(3n), a(5n+1) = (A178765(3n+1) - A178765(3n))/2, a(5n+2) = (A178765(3n+1) + A178765(3n))/2, a(5n+3) = A178765(3n+1) and a(5n+4) = A178765(3n+2)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8-8*x^7+9*x^6-17*x^5+145*x^4+17*x^3+9*x^2+8*x+1) / (x^10+4964*x^5-1). - Colin Barker, Nov 12 2013
a(n) = 4964*a(n-5) + a(n-10) for n>9. - Vincenzo Librandi, Dec 20 2013
Showing 1-9 of 9 results.