A041166 Numerators of continued fraction convergents to sqrt(93).
9, 10, 19, 29, 135, 839, 3491, 4330, 7821, 12151, 226539, 238690, 465229, 703919, 3280905, 20389349, 84838301, 105227650, 190065951, 295293601, 5505350769, 5800644370, 11305995139, 17106639509, 79732553175, 495501958559, 2061740387411, 2557242345970
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,24302,0,0,0,0,0,0,0,0,0,-1).
Programs
-
Mathematica
Numerator[Convergents[Sqrt[93], 30]] (* Vincenzo Librandi, Oct 29 2013 *) LinearRecurrence[{0,0,0,0,0,0,0,0,0,24302,0,0,0,0,0,0,0,0,0,-1},{9,10,19,29,135,839,3491,4330,7821,12151,226539,238690,465229,703919,3280905,20389349,84838301,105227650,190065951,295293601},30] (* Harvey P. Dale, Apr 10 2023 *)
Formula
G.f.: -(x^19 -9*x^18 +10*x^17 -19*x^16 +29*x^15 -135*x^14 +839*x^13 -3491*x^12 +4330*x^11 -7821*x^10 -12151*x^9 -7821*x^8 -4330*x^7 -3491*x^6 -839*x^5 -135*x^4 -29*x^3 -19*x^2 -10*x -9) / (x^20 -24302*x^10 +1). - Colin Barker, Nov 10 2013
Extensions
More terms from Colin Barker, Nov 10 2013