cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041221 Denominators of continued fraction convergents to sqrt(122).

Original entry on oeis.org

1, 22, 485, 10692, 235709, 5196290, 114554089, 2525386248, 55673051545, 1227332520238, 27056988496781, 596481079449420, 13149640736384021, 289888577279897882, 6390698340894137425, 140885252076950921232, 3105866244033814404529, 68469942620820867820870
Offset: 0

Views

Author

Keywords

Comments

From Michael A. Allen, May 04 2023: (Start)
Also called the 22-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 22 kinds of squares available. (End)

Crossrefs

Row n=22 of A073133, A172236 and A352361 and column k=22 of A157103.

Programs

  • Magma
    [n le 2 select (22)^(n-1) else 22*Self(n-1)+Self(n-2): n in [1..31]]; // G. C. Greubel, Oct 25 2024
    
  • Mathematica
    Denominator[Convergents[Sqrt[122], 30]]  (* Vincenzo Librandi, Dec 13 2013 *)
    Fibonacci[1+Range[0,30], 22] (* G. C. Greubel, Oct 25 2024 *)
  • SageMath
    A041221=BinaryRecurrenceSequence(22,1,1,22)
    [A041221(n) for n in range(31)] # G. C. Greubel, Oct 25 2024

Formula

a(n) = F(n, 22), the n-th Fibonacci polynomial evaluated at x=22. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 22*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=22.
G.f.: 1/(1 - 22*x - x^2). (End)

Extensions

More terms from Colin Barker, Nov 14 2013