A041221 Denominators of continued fraction convergents to sqrt(122).
1, 22, 485, 10692, 235709, 5196290, 114554089, 2525386248, 55673051545, 1227332520238, 27056988496781, 596481079449420, 13149640736384021, 289888577279897882, 6390698340894137425, 140885252076950921232, 3105866244033814404529, 68469942620820867820870
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (22,1).
Crossrefs
Programs
-
Magma
[n le 2 select (22)^(n-1) else 22*Self(n-1)+Self(n-2): n in [1..31]]; // G. C. Greubel, Oct 25 2024
-
Mathematica
Denominator[Convergents[Sqrt[122], 30]] (* Vincenzo Librandi, Dec 13 2013 *) Fibonacci[1+Range[0,30], 22] (* G. C. Greubel, Oct 25 2024 *)
-
SageMath
A041221=BinaryRecurrenceSequence(22,1,1,22) [A041221(n) for n in range(31)] # G. C. Greubel, Oct 25 2024
Formula
a(n) = F(n, 22), the n-th Fibonacci polynomial evaluated at x=22. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 22*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=22.
G.f.: 1/(1 - 22*x - x^2). (End)
Extensions
More terms from Colin Barker, Nov 14 2013
Comments