cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A041276 Numerators of continued fraction convergents to sqrt(151).

Original entry on oeis.org

12, 37, 86, 639, 725, 2814, 11981, 14795, 26776, 41571, 484057, 525628, 1009685, 1535313, 7150937, 22988124, 30139061, 233961551, 498062163, 1728148040, 41973615123, 127648993409, 297271601941, 2208550206996
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A041277.

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[151], 30]] (* Vincenzo Librandi, Nov 01 2013 *)

A202280 y-values in the solutions to x^2 - 151*y^2 = 1.

Original entry on oeis.org

0, 140634693, 486075138127903440, 1680019594496931198149880507, 5806645138782932871709060110684609120, 20069484831126506853711147766546649419638369093, 69366081749442007616768328339033006654521310003044446320
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 15 2011

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1996, p. 248.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3456296080, -1}, {0, 140634693}, 7]

Formula

a(n) = 3456296080*a(n-1) - a(n-2) with a(1) = 0 and a(2) = 140634693.
G.f.: 140634693*x^2/(1 - 3456296080*x + x^2).
Showing 1-2 of 2 results.