A041319 Denominators of continued fraction convergents to sqrt(173).
1, 6, 7, 13, 85, 2223, 13423, 15646, 29069, 190060, 4970629, 30013834, 34984463, 64998297, 424974245, 11114328667, 67110946247, 78225274914, 145336221161, 950242601880, 24851643870041, 150060105822126, 174911749692167, 324971855514293, 2124742882777925
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 2236, 0, 0, 0, 0, 1).
Crossrefs
Programs
-
Magma
I:=[1,6,7,13,85,2223,13423,15646,29069,190060]; [n le 10 select I[n] else 2236*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 15 2013
-
Mathematica
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[173], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *) Denominator[Convergents[Sqrt[173], 30]] (* Vincenzo Librandi, Dec 15 2013 *) LinearRecurrence[{0,0,0,0,2236,0,0,0,0,1},{1,6,7,13,85,2223,13423,15646,29069,190060},30] (* Harvey P. Dale, Sep 19 2020 *)
Formula
a(5*n) = A140455(3*n+1), a(5*n+1) = (A140455(3*n+2) - A140455(3*n+1))/2, a(5*n+2) = (A140455(3*n+2)+A140455(3*n+1))/2, a(5*n+3) = A140455(3*n+2) and a(5*n+4) = A140455(3*n+3)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8-6*x^7+7*x^6-13*x^5+85*x^4+13*x^3+7*x^2+6*x+1) / (x^10+2236*x^5-1). - Colin Barker, Nov 12 2013
a(n) = 2236*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 15 2013
Comments