A041421 Denominators of continued fraction convergents to sqrt(226).
1, 30, 901, 27060, 812701, 24408090, 733055401, 22016070120, 661215159001, 19858470840150, 596415340363501, 17912318681745180, 537965975792718901, 16156891592463312210, 485244713749692085201, 14573498304083225868240
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (30,1).
Crossrefs
Programs
-
Mathematica
Denominator[Convergents[Sqrt[226], 30]] (* Vincenzo Librandi, Dec 17 2013 *) LinearRecurrence[{30,1},{1,30},20] (* Harvey P. Dale, Jun 30 2022 *)
Formula
a(n) = F(n, 30), the n-th Fibonacci polynomial evaluated at x=30. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 22 2008: (Start)
a(n) = 30*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=30.
G.f.: 1/(1-30*x-x^2). (End)
Extensions
Additional term from Colin Barker, Nov 17 2013
Comments