cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041421 Denominators of continued fraction convergents to sqrt(226).

Original entry on oeis.org

1, 30, 901, 27060, 812701, 24408090, 733055401, 22016070120, 661215159001, 19858470840150, 596415340363501, 17912318681745180, 537965975792718901, 16156891592463312210, 485244713749692085201, 14573498304083225868240
Offset: 0

Views

Author

Keywords

Comments

From Michael A. Allen, May 16 2023: (Start)
Also called the 30-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 30 kinds of squares available. (End)

Crossrefs

Row n=30 of A073133, A172236 and A352361 and column k=30 of A157103.

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[226], 30]] (* Vincenzo Librandi, Dec 17 2013 *)
    LinearRecurrence[{30,1},{1,30},20] (* Harvey P. Dale, Jun 30 2022 *)

Formula

a(n) = F(n, 30), the n-th Fibonacci polynomial evaluated at x=30. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 22 2008: (Start)
a(n) = 30*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=30.
G.f.: 1/(1-30*x-x^2). (End)

Extensions

Additional term from Colin Barker, Nov 17 2013