cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A041590 Numerators of continued fraction convergents to sqrt(313).

Original entry on oeis.org

17, 18, 53, 230, 2583, 2813, 5396, 19001, 43398, 105797, 360789, 466586, 827375, 9567711, 39098219, 87764149, 126862368, 4401084661, 4527947029, 13456978719, 58355861905, 655371459674, 713727321579
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A041591.

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[313], 30]] (* Vincenzo Librandi, Nov 04 2013 *)

A204419 y-values in the solutions to x^2 - 313*y^2 = 1.

Original entry on oeis.org

0, 1819380158564160, 117124856755987405647781716823680, 7540058082713667504003446125203741470945194284480, 485400601250164750241979240919394389707542655611270208094258863360
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 15 2012

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1996, p. 248.

Crossrefs

Programs

  • Magma
    I:=[0,1819380158564160]; [n le 2 select I[n] else 64376241658269698*Self(n-1)-Self(n-2): n in [1..10]]; // Vincenzo Librandi, May 16 2015
  • Mathematica
    LinearRecurrence[{64376241658269698, -1}, {0, 1819380158564160}, 5]

Formula

a(n) = 64376241658269698*a(n-1) - a(n-2) with a(1) = 0 and a(2) = 1819380158564160.
G.f.: 1819380158564160*x^2/(1 - 64376241658269698*x + x^2).
Showing 1-2 of 2 results.