A042154 Numerators of continued fraction convergents to sqrt(602).
24, 25, 49, 319, 368, 687, 33344, 34031, 67375, 438281, 505656, 943937, 45814632, 46758569, 92573201, 602197775, 694770976, 1296968751, 62949271024, 64246239775, 127195510799, 827419304569, 954614815368, 1782034119937, 86492252572344, 88274286692281
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1374,0,0,0,0,0,-1).
Crossrefs
Cf. A042155.
Programs
-
Magma
I:=[24,25,49,319,368,687,33344,34031,67375,438281,505656,943937]; [n le 12 select I[n] else 1374*Self(n-6)-Self(n-12): n in [1..30]]; // Vincenzo Librandi, Nov 18 2013
-
Mathematica
Numerator[Convergents[Sqrt[602], 30]] (* Vincenzo Librandi, Nov 18 2013 *) LinearRecurrence[{0,0,0,0,0,1374,0,0,0,0,0,-1},{24,25,49,319,368,687,33344,34031,67375,438281,505656,943937},30] (* Harvey P. Dale, Mar 18 2023 *)
Formula
G.f.: (24 +25*x +49*x^2 +319*x^3 +368*x^4 +687*x^5 +368*x^6 -319*x^7 +49*x^8 -25*x^9 +24*x^10 -x^11)/(1 -1374*x^6 +x^12). - Colin Barker, Nov 09 2013
a(n) = 1374*a(n-6) - a(n-12). - Vincenzo Librandi, Nov 18 2013
Extensions
More terms from Colin Barker, Nov 09 2013