cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A023054 Simon Plouffe's conjectured extension of sequence A008368.

Original entry on oeis.org

1, 1, 3, 4, 7, 8, 13, 14, 20, 22, 29, 31, 40, 42, 52, 55, 66, 69, 82, 85, 99, 103, 118, 122, 139, 143, 161, 166, 185, 190, 211, 216, 238, 244, 267, 273, 298, 304, 330, 337, 364, 371, 400, 407, 437, 445, 476, 484, 517, 525, 559, 568, 603, 612, 649, 658, 696, 706, 745, 755
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + 8*x^5 + 13*x^6 + 14*x^7 + 20*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x^5)/((1-x)*(1-x^2)^2*(1-x^3)), {x, 0, 59}], x] (* Georg Fischer, Oct 13 2020 *)
  • PARI
    {a(n) = if( n%2, (n + 1) * (5*n + 7) + 8 * (n%6 == 3), (n + 2) * (5*n + 8) + 8 * (n%6 == 0) ) / 24}; /* Michael Somos, May 22 2014 */
    
  • PARI
    {a(n) = if( n<0, n = -3 - n); polcoeff( (1 - x^5) / ((1 - x) * (1 - x^2)^2 * (1 - x^3)) + x * O(x^n), n)}; /* Michael Somos, May 22 2014 */

Formula

G.f.: (1-x^5)/((1-x)*(1-x^2)^2*(1-x^3)).
Euler transform of length 5 sequence [ 1, 2, 1, 0, -1]. - Michael Somos, May 22 2014
a(-3 - n) = a(n). - Michael Somos, May 22 2014
a(2*n + 2) - a(2*n) = A032793(n + 2). a(2*n + 3) - a(2*n + 1) = A042706(n + 2). - Michael Somos, May 22 2014

A042707 Denominators of continued fraction convergents to sqrt(883).

Original entry on oeis.org

1, 1, 3, 4, 7, 137, 555, 2912, 18027, 38966, 95959, 230884, 326843, 884570, 1211413, 2095983, 5403379, 45323015, 413310514, 458633529, 1789211101, 2247844630, 6284900361, 184509955099, 375304810559, 559814765658, 2054749107533, 2614563873191, 25585823966252
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[883], 30]] (* Vincenzo Librandi, Jan 27 2014 *)

Extensions

More terms from Vincenzo Librandi, Jan 27 2014
Showing 1-2 of 2 results.