A042861 Denominators of continued fraction convergents to sqrt(962).
1, 62, 3845, 238452, 14787869, 917086330, 56874140329, 3527113786728, 218737928917465, 13565278706669558, 841266017742430061, 52172058378737333340, 3235508885499457097141, 200653722959345077356082, 12443766332364894253174225, 771714166329582788774158032
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (62,1).
Crossrefs
Programs
-
Mathematica
Denominator[Convergents[Sqrt[962],20]] (* Harvey P. Dale, Jun 15 2013 *)
Formula
a(n) = F(n, 62), the n-th Fibonacci polynomial evaluated at x=62. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 62*a(n-1) + a(n-2), n>1; a(0)=1, a(1)=62.
G.f.: 1/(1 - 62*x - x^2). (End)
Extensions
Additional term from Colin Barker, Dec 25 2013
Comments