cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A040930 Continued fraction for sqrt(962).

Original entry on oeis.org

31, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62
Offset: 0

Views

Author

Keywords

Examples

			31 + 1/(62 + 1/(62 + 1/(62 + 1/(62 + ...)))) = sqrt(962).
		

Crossrefs

Cf. A042860/A042861 (convergents).
Continued fraction for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040000 (contfrac(sqrt(2)) = (1,2,2,...)), A040002, A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870 (contfrac(sqrt(901)) = (30,60,60,...)).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(sqrt(962)),confrac);
  • Mathematica
    PadRight[{31},100,62] (* Harvey P. Dale, Sep 18 2012 *)

Formula

G.f.: 31*(1+x)/(1-x). - Colin Barker, Aug 11 2012
From Elmo R. Oliveira, Feb 16 2024: (Start)
a(n) = 62 for n >= 1.
E.g.f.: 62*exp(x) - 31.
a(n) = 31*A040000(n). (End)

A042860 Numerators of continued fraction convergents to sqrt(962).

Original entry on oeis.org

31, 1923, 119257, 7395857, 458662391, 28444464099, 1764015436529, 109397401528897, 6784402910228143, 420742377835673763, 26092811828722001449, 1618175075758599763601, 100352947508861907344711, 6223500920625196855135683, 385957410026271066925757057
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[962], 30]] (* Vincenzo Librandi, Dec 08 2013 *)

Formula

From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 62*a(n-1) + a(n-2), n > 1; a(0)=31, a(1)=1923.
G.f.: (31+x)/(1-62*x-x^2). (End)

Extensions

Additional term from Colin Barker, Dec 25 2013
Showing 1-2 of 2 results.