cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A040930 Continued fraction for sqrt(962).

Original entry on oeis.org

31, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62
Offset: 0

Views

Author

Keywords

Examples

			31 + 1/(62 + 1/(62 + 1/(62 + 1/(62 + ...)))) = sqrt(962).
		

Crossrefs

Cf. A042860/A042861 (convergents).
Continued fraction for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040000 (contfrac(sqrt(2)) = (1,2,2,...)), A040002, A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870 (contfrac(sqrt(901)) = (30,60,60,...)).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(sqrt(962)),confrac);
  • Mathematica
    PadRight[{31},100,62] (* Harvey P. Dale, Sep 18 2012 *)

Formula

G.f.: 31*(1+x)/(1-x). - Colin Barker, Aug 11 2012
From Elmo R. Oliveira, Feb 16 2024: (Start)
a(n) = 62 for n >= 1.
E.g.f.: 62*exp(x) - 31.
a(n) = 31*A040000(n). (End)

A042861 Denominators of continued fraction convergents to sqrt(962).

Original entry on oeis.org

1, 62, 3845, 238452, 14787869, 917086330, 56874140329, 3527113786728, 218737928917465, 13565278706669558, 841266017742430061, 52172058378737333340, 3235508885499457097141, 200653722959345077356082, 12443766332364894253174225, 771714166329582788774158032
Offset: 0

Views

Author

Keywords

Comments

From Michael A. Allen, Jan 22 2024: (Start)
Also called the 62-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 62 kinds of squares available. (End)

Crossrefs

Row n=62 of A073133, A172236 and A352361 and column k=62 of A157103.

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[962],20]] (* Harvey P. Dale, Jun 15 2013 *)

Formula

a(n) = F(n, 62), the n-th Fibonacci polynomial evaluated at x=62. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 62*a(n-1) + a(n-2), n>1; a(0)=1, a(1)=62.
G.f.: 1/(1 - 62*x - x^2). (End)

Extensions

Additional term from Colin Barker, Dec 25 2013
Showing 1-2 of 2 results.